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A simple procedure is given for determining whether or not an arbitrary weight of a simple Lie
algebra is contained in an arbitrary irreducible representation. The procedure involves two
steps, determining the Weyl class of the weight and determining the classes contained in the
representation. The second step applies without alteration to all simple algebras, while the first
step is given here only for E;. The weights of the shortest 31 Weyl classes of Ej are listed in a

convenient, orthogonal basis.

I. INTRODUCTION

In the application of finite, simple Lie algebras a com-
mon problem is to find whether or not a weight M is con-
tained in an irrep (irreducible representation) A. Dynkin
developed a constructive method that may be used to solve
this problem for any M and A (Ref. 1). Descriptions of the
procedure are given in various reviews and texts.>* Unfortu-
nately, the method is cumbersome for all but the smallest
representations, and the number of steps involved increases
without limit as one considers very large irreps. One purpose
of this paper is to present an alternate method involving a
number of steps that is small for all irreps.

The new method is applied here to the algebra E;. Re-
cent developments in string theory suggest that this algebra
isimportant in particle physics.* The properties of the small-
est nontrivial irrep (the adjoint) have been discussed in de-
tail in the literature. However, the other irreps are still unfa-
miliar. The main reason for this is that the irreps are very
large; for example, the sixth smallest irrep has dimension
147 250. A second purpose of this paper is to provide a trac-
table treatment of Ej irreps. The weights of the shortest 31
irreps are given in a convenient basis. (The length of an irrep
is defined to be the length of the longest weights in the irrep. )

The method involves the Weyl reflection group. The
weights that may be obtained from a given weight by a series
of Weyl reflections are said to be in the same Weyl class (or
Weyl orbit). The Weyl class is a convenient concept, for
three well-known reasons. First, each weight is in one and
only one Weyl class. Second, the multiplicity of a weight in
an irrep is the same for all weights in a class. Third, the sizes
of all Weyl classes for an algebra are bounded by the finite
size of the Weyl group.

The method involves two separate algorithms. The first,
the “weight algorithm,” is for finding the Weyl class of an
arbitrary weight. The second, the ‘‘representation algo-
rithm” is for determining whether or not a given class is
contained in a given irrep. The representation algorithm is
discussed first, because the method used is general and may
be applied to any finite simple Lie algebra. The weight algo-
rithm involves the choice of a convenient basis. Although the
method for selecting a basis is general, the details of applica-
tion depend on the basis and thus are different for different
algebras. Idenfifying the class of a weight is nontrivial only
for the algebras G,, F,, E,, E,, and E;. The algebra E; is
treated here.
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If a Weyl class is in an irrep, the multiplicity may be
obtained from the Freudenthal recursion formula,>*> or
from published tables.® Multiplicities are not given here.

The basic group-theoretical concepts and formulas that
are used in the paper are listed in Sec. II. The representation
algorithm is derived and applied in Sec. III. Section IV con-
tains the weight algorithm for Eg, an iterative procedure in-
volving either zero, one, or two iterations. The basic reasons,
and a proof, that two iterations are sufficient are given in Sec.
V.

Il. BASIC CONCEPTS AND FORMULAS

The standard Cartan—Weyl construction is used. If n is
the rank of a simple algebra, » commuting generators, de-
noted by H, to H,, are diagonalized in each irrep. The
weight vector M of a state in an irrep is a vector in an z-
dimensional Euclidean space, with real components f; given
by HM = f,M.

The roots are the weights of the adjoint representation.
Following the Dynkin method, I label the orthogonal axes 1
through n, and define a weight as positive (or negative) if its
first nonzero component is positive (or negative). A simple
root is a positive root that cannot be written as a sum of two
positive roots; there are n simple roots. If M is a weight in an
irrep, and « is a nonzero root, a fundamental equation is,’

(M,a)(2/&®) =pu_ —Pay» (2.1)

where the non-negative integers p, _ and p,, are the maxi-
mum numbers of times the root @ may be subtracted from M,
and may be added to M, to obtain other weights in the irrep.
Ifaisasimpleroot R;, theintegerp, _ — p, , isthe Dynkin
component m;, 1e.,

m; = (M,R,)(2/R2). (2.2)

A dominant weight, denoted by M ™, is one for which all
the Dynkin components are non-negative. Most irreps con-
tain more than one dominant weight. However, the most
positive weight in the irrep must be dominant, and is used to
characterize the irrep. Each dominant weight is the most
positive weight of a unique irrep.

The root-basis components and Dynkin components of
a weight are denoted by capital and small letters, respective-
ly. The root-basis components are the coefficients in an ex-
pansion in the simple roots, i.e., M = =, M,R,. They are re-
lated to the Dynkin component m; by®
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m; = ZM,-A (2.3a)

ijs

M, =Sm;4~",, (2.3b)
j

where the elements of the Cartan matrix 4 are given by
A; = (R,R;)(2/R?). (2.4)

A scalar product of two vectors is expressed simply if one
vector is in the Dynkin basis and the other is in the root basis.
The expression is

(MW) =S m,W,(R%/2). (2.5)
The length squared of a vector M may be determined
from the formula,

Mzzzmiij,»j, (2.6)
7

where G is the symmetric metric tensor, related to 4 ~! by
G, =(4"1,(R}/2). Q2mn

For every nonzero root a there is a Weyl reflection oper-
ator S, which permutes the weights in an irrep. The action
of S, on a weight M is given by®

S, (M) =M— (2/a®>){M,a)a. (2.8)

All the weights in a Weyl class (related by one or more Weyl
reflections) are of the same length, called here the length of
the class. The most positive weight in a class is dominant; all
other weights are not dominant.

lll. THE REPRESENTATION ALGORITHM

The set of weights for an algebra is the set of vectors with
integral Dynkin components. The representation algorithm
makes use of the following “‘containment criterion”: the
weight m is in the irrep with most positive weight A if and
only if the root-basis components of A — M * are all non-
negative integers, where M * is the dominant weight of the
Weyl class of M. The validity of the criterion is proved at the
end of this section.’

Equation (2.3b) may be used to base a simple algorithm
on this criterion. I denote A~M * by A. The rule is that the
root-basis components A; must be non-negative integers,
where

A =34 —mT )4, (3.1)
j
To my knowledge, this simple rule is not contained in the
literature.
Iillustrate the algorithm with an example from the alge-
bra F,. The 4 ~' matrix for F, is given by

2 3 4 2
~ 3 6 8 4

A7 =1, 4 6 3|’ (3.2)
1 2 3 2

where the root numbering convention is that of Fig. 1. We
consider the two dominant weights B and C, with Dynkin
components B = (2000) and C = (0011), and ask whether
or not either of the corresponding Weyl classes is the irrep of
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| 2 3 4 FIG. 1. Dynkin diagram for F,, with

O__(D__. the root-numbering convention. The

shaded circles denote short roots.

the other weight. From Egs. (3.1) and (3.2), the root basis
components of B and C are

B = [4684], C=[3695].

Since the difference B — C contains both positive and nega-
tive root-basis components, neither is in the irrep of the oth-
er. [ The lengths of these Weyl classes, determined from Egs.
(2.6), (2.7), and (3.2), and the convention that the short

and long root lengths are 1 and 2, are B2 =8and C? = 7.]

For some algebras the weights are in two or more con-
gruence classes. All weights in any Weyl class, or in any
irrep, are in the same congruence class. If M * is in a different
congruence class from A, the A, of Eq. (3.1) are not all
integers. This follows because every nontrivial congruence
relation may be associated with a column of the 4 ~! matrix
in which at least one of the elements is nonintegral.'® Let
such a column be the & th column. Then, if C is the smallest
positive integer such that the product C (4 7'),, is an in-
teger for each i, the congruence class of a weight with Dyn-
kin indices a; is

Ya,C(4 —1, (mod C).

Clearly, Z,a, (4 ~ "), is an integer only for class C (class 0).
The containment criterion is valid when M and A are in
different congruence classes, but is not useful in such a case,
since one recognizes the incompatibility of M and A from the
congruence relation.

Another useful toolis the well-known rule: if M * and A
are different dominant weights, and if the Weyl class of M *
is in the irrep A, then,

A2 > (M + )2'
This rule may be proved by using Eq. (2.5), i.e.,

(3.3)

N — (M"Y =2M"A) + A =3Ym* AR} + A,
‘ (3.4)

Since the m,;* and A, are all non-negative, the right-hand
term of Eq. (3.4) is positive, proving the rule.

I will use the algorithm to list the Weyl classes in all
irreps of E, that are not longer than (32)'/2. The normaliza-
tion convention is that the nonzero roots are of length 2. As
seen from Eq. (2.7), the 4 ~! and G matrices are identical.
The matrix is'’

s N\
4 7 10 8 6 2 5
7 14 20 16 12 8 4 10
10 20 30 24 18 12 6 15
|8 16 24 20 15 10 5 12
476 12 18 15 12 8 4 of &Y
4 8 12 10 8 6 3 6
2 6 5 4 3 2 3
5 10 15 12 9 6 3 8
\ J

The root-numbering convention may be obtained by delet-
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I 2 3 4 5 6 7 O

FIG. 2. Extended Dynkin diagram illustrating the Dy — Ej basis. The E;
simple roots are numbered 1 to 8.

ing the root 0 and its connecting line from Fig. 2. The ele-
ments of 4 ~! are all integral, so all irreps are in the same
congruence class.

It is easy to use Egs. (2.6) and (3.5) and the require-
ment that the Dynkin components of dominant weights are
non-negative integers to determine all the Weyl classes of Eg
such that (M *)?<32. These classes are listed in order of
increasing length as the boldface entries in Table 1. The sub-
scripts a, b, ¢, and d are used to label different classes of the
same length, i.e., 14a and 14b are the two classes of length
(14)'/2. The symbols in curly brackets are an abbreviation
for the Dynkin components; e.g., { 1>7} denotes the Dynkin
components (2000 0010).

Because of the rule of Eq. (3.3) each irrep contains its
own Weyl class (class of the most positive weight), and some
other shorter classes. If B and C are dominant weights in the
same congruence class, and B2 > C?, usually BD C (irrep B
contains class C). Thus I define an anomalous pair of Weyl
classes as two classes of the same congruence of unequal
length, such that the shorter is not contained in the irrep of
the longer. In Table I the classes in parentheses are the
shorter anomalous partners of the preceding boldface en-
tries. An x indicates that there are no shorter anomalous
partners.

I discuss briefly the calculation of the table entries. The
easiest procedure is to consider the irreps in order of increas-
ing length, checking each for shorter anomalous partners.
One can use the fact, obvious from the contents criterion,
that if BD C and C2 D, then BD D. I illustrate by consider-
ing the irrep 16a, with Dynkin components {12}. I assume
that the shorter irreps have all been examined and found to
contain no shorter anomalous partners. The root-basis com-
ponents of {12} are twice the elements in the first row of 4 ~,
1e.,

16a{1%} = [8 1420 16 12 8 4 10]. (3.6)

One uses Eq. (2.3b) to find the corresponding root-basis
components of the dominant weights immediately preceding
16a in Table I. These are

14a{2} = [7 142016 12 8 4 10],
14b{67} = [6 1218 15129 59].

(3.7a)
(3.7b)

TABLE I. Anomalous pairs of E; Weyl classes with M,<32.

0 {0}x; 2 {7}x; 4 {1}x; 6 {6}x; 8a {8}x; 8b {7%}x;

10 {17}x; 12 {5}x; 14a {2}x; 14b {67}x; 16a{1}(14b);

16b {78}x; 18a {16}x; 18b {7°}(14a,16a,16b); 20a {17°}x;

20b {4}(18b); 22a {18}(18b,20a); 22b {57}x; 24a {27}x;

24b {67}(22a); 26a {127}(24b); 26b {68}x; 26c {67°}(22a,24a);
28a {15}(26c); 28b {728} (26a); 30a {167}x; 30b {3}(26c,28b);
32a {12}(26¢,28b,30a); 32b {47}x; 32c {82}(26c,28b,30a);

32d {7%}(22a,24a,26a,26b,28b,30a,30b).
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Comparing Eq. (3.6) with Egs. (3.7a) and (3.7b), one sces
that the pair 16a and 14b is anomalous, but 14a is contained
in 16a. Since all shorter classes are contained in 14a, one
concludes that 14b is the only shorter anomalous partner of
16a. Thus the irrep 16a contains the class 16a and all shorter
classes except 14b. We note that the root-basis difference
between Eqgs. (3.7a) and (3.7b) contains elements of both
signs, but this follows automatically from the fact that the
two classes are of the same length.

Finally, I will prove the validity of the containment cri-
terion, stated at the beginning of the section. One-half of the
proof is obvious. Since the standard procedure for finding
weights in an irrep involves subtracting simple roots from A,
it is clear that if the root-basis components of A= A — M *
are not all non-negative integers, M * (and hence M) is not
in A. Hence we turn to the case where the A; are all non-
negative integers.

We neglect the trivial case A = 0. Then A is a positive
weight. It follows that at least one of its Dynkin components
must be positive, since weights with all nonpositive Dynkin
components are the most negative weights of irreps, and so
are not positive. Let §, be a positive Dynkin component.
Since the A; are non-negative and the off-diagonal elements
of the Cartan matrix are nonpositive, it follows from the
transformation rule of Eq. (2.3a) that A, > 0. Since A, is
integral,

A >l (3.8)

The Dynkin component 4, of A satisfies the equation,
A, =6, + m;.Sincem," is non-negative and &, is positive,
A, > 1. It follows from Eq. (2.1) that one may subtract the
simple root R, from A, i.e., the weight A’ = A — R, isinthe
irrep.

One next considers the pair of weights A’ and M . The
new difference weight A’ = A’ — M ™ is related to A by the
equation,

Ar' = Ai - 6ik‘

It follows from Eq. (3.8) that the root-basis components A/
are all non-negative integers, so that process may be repeat-
ed, until a path is traced from A to M *, proving M * isin A.
This completes the proof.

IV. THE WEIGHT ALGORITHM
A. The problem

In this section I discuss the problem of finding the Eg
Weyl class of an arbitrary weight, expressed in Dynkin com-
ponents. There exists a standard, finite procedure for finding
the answer. One makes a series of Weyl reflections Sy, al-
ways choosing R tobe asimple root corresponding to a nega-
tive Dynkin component, so that the reflection leads to a
more positive weight. Such a series is called a “Dynkin re-
flection series” in this paper. It is easy to make each reflec-
tion; if the jth Dynkin component is — b (where b is posi-
tive) the S; reflection adds b times the simple root R;.
Unfortunately, the number of reflections necessary to obtain
a dominant weight may be as large as the number of positive
roots, 120 in the case of E;. Clearly, a shorter procedure is
needed.
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B. The Dg basis

For each of the classical algebras a basis exists in which
the Weyl class of a weight is obvious. Therefore it is conven-
ient to express the E; weights in a classical-algebra basis.
Such a basis has the additional advantage of giving a clearer
picture of the E; weights. A convenient basis for Ey is based
on Dy. I will define this basis here, and apply it to Eg in part C
of this section.

In a standard, orthogonal Dy basis each nonzero root
has two components of magnitude 1, the other components
being zero.'? A shorthand notation is used for the roots in
this basis: i.e., 3_.5_ denotes [0010 — 1000]. The simple
rootsare 1,2_,2,3_,3,4_,4,5_,5,6_,6,.7_,7.8_,
and 7.8 . The Dynkin diagram is obtained by deleting the
root labeled + and its connecting line from Fig. 2. The
simple roots listed above correspond to the circles numbered
0,7,6,5,4, 3,2, and 8, respectively.

The components of a weight in the orthogonal basis are
denoted by f;. It is seen from Eq. (2.2) that the set of weights
for Dy is the set of vectors that have integral scalar products
with all roots. The weights are of two types. The vector
weights are all vectors such that each component f; is inte-
gral. The spinor weights are all vectors such that each com-
ponent is half-odd-integral. Both the vector and spinor
weights may be classified as even or odd, according to
whether the component sum X8_ /; is even or odd. These
four classes are the four congruence classes of Dy. It is clear
that adding a root to a weight leads to another weight of the
same congruence class.

Next we examine the structure of the Weyl classes in the
orthogonal basis. It follows from Eq. (2.8) that the Weyl
reflection corresponding to the rootj k_ (orj_k_ ) inter-
changes the j and k components of a weight. The reflection
corresponding to the rootj k. (orj_k_) interchanges thej
and k components and changes both their signs. It is conven-
ient to define the signature of a weight as zero, positive, or
negative, corresponding to the component product I1; f; be-
ing zero, positive, or negative. Weyl reflections preserve the
signature.

It is clear from the above discussion that if one is given a
D; weight in the orthogonal basis, he may determine the
dominant weight of the Weyl class immediately. The compo-
nents are arranged in order of decreasing magnitude, and the
signs of the first seven components are chosen to be positive.
If the eighth component is nonzero, its sign is chosen to be
the signature of the weight. A weight is dominant if and only
if it satisfies the conditions

ANV TE
fi>0 for i<8.

(4.1a)
(4.1b)

C. Appilication to £;

An Ej basis based on Dy may be found by the replace-
ment prescription of Ref. 10. One writes the simple roots of
Dy and adds to this set the most negative weight of a Dy irrep,
such that the weight length is 2. If the irrep is the odd-
signature fundamental spinor, the new rootis [ - — — —
— — = + ] (where the magnitudes are all 1). One then
discards the Dg root 1,2 __ and reflects the first axis, so that
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the eight remaining roots are positive. The new root set is the
simple root set of E5. Ordered according to the numbers 1 to
8 of Fig. 2, the E; simple roots are

[+——— ———+],
7.8, 6,7, 5,6_, (4.2)
4,5, 3.4_, 2.3 ,and 7,8..

The replacement procedure is useful because it allows one to
consider all bases of a certain type. However, it has been
known for years that a convenient E; basis may be obtained
by taking as E, roots the D; roots plus the states of the even-
signature fundamental spinor.'*> With the usual positivity
definition (Sec. II) the simple roots of this set are those of
Eq. (4.2).

Since only one of the E simple roots (the spinor) is not
a Dy root, one may determine the E; weight set and Weyl
classes by considering all the Dy roots and one spinor. It is
simplest to use the spinor

" =l++++ +++4+1

obtainable by combining [ + — — — — — — + ] with
Dy roots. The weight set of Eg includes all Dg weights Wsuch
that ( W,y ™) is an integer. This includes only two of the four
Dg congruence classes, the vectors of even 2 f; and the spin-
ors of even 2,f;. Since the spinor Ey root connects these
classes, there is only one Eg congruence class.

It follows from Eq. (2.2) and the root set of Eq. (4.2)
that the E; Dynkin components of a weight are given in
terms of their components in the orthogonal basis by

a,=Wfi—fi—fi—fa—fs—fo—frt+Se) (43a)
a,=f;—fo (4.3b)
ay=fo—fr as=fs—fs (4.3¢)
as=fy~fss ag=/fs—fa (4.3d)
a;=f—f ag=fi+f (4.3¢)

Frequently, one needs to determine the /’s from the a’s. The
easiest procedure to follow is to use the inverse equations for
S1 /7, and fg,

Sfi=2a, +Ia, + Sa; + 4a, + 3as + 2a, + a, + Jag, (4.4a)
fs=4ay—ay), f1=14(as+a,), (4.4b)
and then use Eqs. (4.3c)-(4.3e) to determine in order f
through f; (i.e., fo =f; + a;, etc.) In order to simplify the
determination of dominant weights in the orthogonal basis, I
list below the eight fundamental E; weights in this basis; {k}
denotes the fundamental weight with Dynkin components
a; =6,

{1} 2, {5} 3111,
{2} y711 111 - 1), {6} 211, 45
{3} 511111, {7} 11, (4.3)

{4} 41111, {8} (5111 1111),
where two or more zeros at the end of a weight are omitted,
and the constant ! is factored out of the spinor weights.
The Ej root set includes all the D, roots, so each E; Weyl
class is a sum of complete Dy Weyl classes. The Dy classes in
an Ej class are those connected by the reflection S, . asso-
ciated with the spinor y*. It is seen from Eq. (2.8) that
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S+ () =f', where

8
fi=fi—=3f. (4.6)
4 j=1
When one uses Eq. (4.6) to determine the Dy classes asso-
ciated with a dominant class (class of the dominant E,
weight) he does not have to worry about the order of the
components, but only has to consider different combinations
of the signs of the f;.

I will illustrate the technique by determining the D,
classes in the E; Weyl class {2}, with M2 = 14. From Eq.

TABLE II. The Dy Weyl classes in the shorter Ej classes.

(4.5) the dominant weight is [{(7111 111 — 1) ]. From Eq.
(4.6), the result of applying the reflection S, - to this weight
is[2—1—1—1 —1—1—1-—2]. Thedominant weight
of this Dy Weyl class is [2211 111 — 1]. One next changes
two signs in the original dominant weight, obtaining
[4(7111 1 —1—1 — 1)]. Reflecting by S, -, one obtains a
weight in the D, class with dominant weight
[4(5333111 —1)]. Applying Eq. (4.6) to the weight
[1(711 -1 —1-—1—1-1)] leads to the D; Weyl class
{3111 11].

No other Dy classes may be obtained from one S, . re-

0{0}1 16b {78} 2'°3%5
od 2111p
7. 3111 1111p
21{1732 3 2221 1110p
J(7311 1111)d
(1111 1111)p T
4 {1}2'3s 1(5333 3111)p
2d 1(3333333 — 1)p
111ls oree.
J(3111 111 ~ 1)p 12“111{1116}2357
6{6}2°3-5-7 12215
211d 3211 1110p
1111 11p 2222 11s
33111 Dp J(7331 11— 1)p
8a {8} 273%5 1(5533 1111)s
21111p 4(5333333 - 1)p
111111 —1p 18b {73} 243-5

J(5111 1111)d
1(3331 111 ~ )p
8b {72} 235
22d

1111 1111p

10 {17} 253°5-7
314

2211s

2111 1110p
3(5311 111 — 1)p
1(3333 1111)s

12 {5} 2¢3%5-7
3111d

2225

211 11p

3(5331 1111)p
1(3333311 - 1)p

14a {2} 2°3°5
3111 t1p

22211s

2211111 —1p
J(711E 111 — 1)d
1(5333 111 = 1)p
14b {67} 273-5-7
321d

2211 1111p

33d
}(33333333)p

20a {177} 2°3°5-7
42d
3311s
2222 1111s
(7511 111 — 1)p
1(53333331)p

20b {4} 283%5-7
41111d

3221 Hip

222225

2222111 — 1p
(7333 1111)p
1(5551 1111)s
1(5533 311 — 1)p

22a {18} 2'93%5
4111 1110p
322215
3221111 — 1p
39111 1111)d
(7333311 — 1)p
}(5553 111 — 1)s
1(5333333 = 3)p

22b {57} 23*5-7
4211d

24a {27} 2°3%5-7 28b {778} 2'°3°s
211 11p 43111p
33211s 32222111p
3311111 —1p 2222 2220p
3222 1110p 49511 1111)d

§(9311 111 — 1)d
407533111 - 1)p
1(7333 3311)p
1(5553 3111)s
1(5533333 —1)p
24b {6} 2°3-5-7
422d
3311 1111p
2222 22p
26a {127}3253%5-7
51d
211111 - 1p
33225
§(7333333 — 1)p
1(5555 1111)s

26b {68} 2°3%5-7
42211p
211 1111p
3321 1110p
322221p
2222221 —1p
1(9331 1111)d
17551 111 — 1)p
1(7533 3111)p
1(5553331 — 1)p
26¢ {67°} 27357
431d
2222 2211p
L7711 1111)p
4(5533 3333)p

28a {15} 273°5%7
5111d
42225
42211110p
3331s
3322 11s
3222211 — 1p
§(9333 111 = 1)p
}(7553 1111)s

17731 111 = 1p
1(73333333)p
}(5553 3331)p

30a {167} 273%5-7
521d
4321s
4311 1110p
3322 1111s
3222 2210p
19531 111 —1)p
1(7733 1111)s
1(7533 3331)p
1(5555 3311)s

30b {3} 2°3*5-7
5111 11d
4222 11p
3331 11s
332225
3322111 — Ip
1(9333 3111)p
}(7553 311 — 1)p
}(5553 333 — 3)p

32a {12} 2'°3%5

SII1 111 —1p
4222 111 —1p
33321s

(1] 111111 - Dd

1(9333331 — 1)p
(7555 111 — 1)s
1(7533333 - 3)p

32b {47} 2'93%5-7
52111d
4321 11p
4222 1111p
3331 1111s
33222110p
}(9533 1111)p
17751 1111)s
17733311 — 1)p

3(5511 1111)p ;gﬁ y 17533 331 — 1)p 1(7553 33}1);:
1(33333311)p P 1(5555 311 — 1)s 1(5555 5111)s
3221 1111p 1(5555 333 — 1)p
16a {12}2%3°5 2222 2110p 32¢ {82} 2735
4 33531 1111p S111 1111
i —1p 1(5533 3311)p 42222
22225 p
3331111 = 1p
2222222 —~2p
32d {74} 235
444
2222 2222p
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flection of a member of the 1(7111 111 — 1) class. However,
if S, . is applied to all members of the new Dy classes, one
other Dy class is found, with dominant weight [22211]. (For
example, the weight [11000 — 2 — 2 — 2] results from ap-
plying S« to [22111—1—1—1].) There are five Dy
classes in the Ej class {2}.

All the Dy classes in the E, classes with M <32 arelisted
in Table I1. The boldface symbols and curly bracket Dynkin
labels (e.g., 14a {2}) denote the Ej classes with the same
notation used in Table I. The figures after the curly brackets
(i.e., 2°3%5) are the numbers of the weights in the E; classes,
expressed in prime factors. The contained Dj classes are list-
ed below each E; class, with the vector classes preceding the
spinor classes. The letter d denotes the Dy class containing
the dominant E; weight, while p and s (primary and second-
ary) label classes that require one and two S, - reflections,
respectively, from a member of the dominant class. The fact
that two S, . reflections are sufficient to obtain all contained
classes is proved in Sec. V.,

We now return to the basic problem of finding the Weyl
class of an arbitrary E; weight. We consider first a weight of
length no greater than (32)'/2, the weight % with Dynkin
components,

' =(10-12 -33 —41). 4.7)

One finds from Egs. (4.4a) and (4.4b) and (4.3¢)—(4.3¢)
that the components in the orthogonal basis are
[4{(1 —53 —33 —111)]. The length squared is 14 and
the dominant weight of the D, class is [4(5333 111 —1)].
From Table I1I this is the E, class 14a {2}. [In this case if one
used a Dynkin reflection series (Sec. IV A), 47 reflections
would be required. ]

D. The long-weight procedure

If the weight length exceeds (32)'/2, one cannot use Ta-
ble 11, so an extension of the method is needed in order to
find the E; Weyl class of the weight. One begins as before,
expressing the weight in the orthogonal basis and consider-
ing the corresponding D-dominant weight (dominant
weight of the D, Weyl class). Since all £ simple roots except
R, are Dg roots, the E, Dynkin components a; of the D-
dominant weight are non-negative for />2. One computes a,
from Eq. (4.3a). If a, is non-negative the weight is £ domi-
nant (a dominant E; weight). If a, is negative one performs
the Weyl reflection S| associated with R . The easiest way to
make this reflection is to change the signs of the interior
components (components 2 through 7), apply Eq. (4.6),
and change the signs of the interior components again. Since
one is interested only in the Dy Weyl class of the reflected
weight, the final sign-change operation may be omitted. One
considers the dominant weight of the new Dy Weyl class. If
the new a, is negative one makes a second S reflection. It is
shown in Sec. V that two is the maximum number of S,
reflections needed to produce an E-dominant weight. One
may use Egs. (4.3a)—(4.3e) to transform the e-dominant
weight to the Dynkin basis.

We consider the example of a weight in the orthogonal
basis that is a member of the Dy Weyl class [ 7654 3210]. The
length squared is 140. From Eq. (4.3a), the value of ¢, is
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— 7, so0 an S, reflection is needed. One changes the signs of
the interior components, yielding [7 —6 —5 —4
—3 —2 — 10]. Application of Eq. (4.6) yields the weight
f1(21 —5 —3 —11357)].The dominant weight of this
Dy class is [4(21755331 —1)]. For this weight
a, = — 1, so a second S, reflection is needed. The second
reflection leads to the Dy class with dominant weight
[113221100], which must be £ dominant. From Egs.
(4.3a)—(4.3e), the Dynkin components are (1010 1010).

We consider one more example, a weight M of the Dy
class [1211 10987 6 — 5]. The value of M? is 620. The
value of @, is — 22, so an S, reflection is required. Changing
the signs of the interior components and applying Eq. (4.6)
yields a weight of the Dj class,

[23654 3210]. (4.8)

For this weight, @, = 1, so the weight is £ dominant. The
Dynkin indices are (1111 1111). This is the shortest class
with a dimension equal to that of the full Weyl group (696,
729, 600) (Ref. 14). The dimensions of some classes are
discussed in Sec. V.

V. CONVERGENCE RATES AND ASYMPTOTIC LIMITS

The long-weight procedure of Sec. IV D is related to a
Dynkin reflection series (Sec. IV A) with all reflections ex-
cept S, made automatically. However, in such a series the
total number of reflections is as large as 120 in some cases.
Therefore one might expect that the maximum number of S
reflections in the long-weight procedure would be on the
order of 15 (120/8), rather than two. There are three rea-
sons that the procedure converges so fast. These are dis-
cussed below.

(1) R, is less active than most roots: Since R | is the end
root of the second shortest branch of the £, diagram of Fig.
2, this root is the second least active simple root of E. This is
evidenced by the fact that the first root-basis components of
most dominant weights [such as those of Egs. (3.7a) and
(3.7b) ] are the second smallest components.

(2) The S, reflections in the long-weight procedure are
made with “bottom priority”: In order to understand this
point let us construct a Dynkin reflection series for an SU(3)
weight with Dynkin components ( — a, — &), wherea and b
are positive. The two simple roots R, and R, have Dynkin
components (2, — 1) and ( — 1,2), as seen from Eq. (2.3a)
and the Cartan matrix for SU(3). One can use either S| or S,
for the first reflection. If S, is chosen, the Dynkin compo-
nents of the reflected weight are (@, — b — a). The next two
reflections must then be S, and S/, respectively, yielding suc-
cessively, ( — b,b + a) and (b,a), which is dominant. Two
S, and one S, reflections were used. Clearly, if one had ap-
plied .S, first, he would have arrived at the same place in the
same number of steps, but with only one .S, reflection. In
order to generalize this phenomenon I define a bottom prior-
ity, Dynkin reflection series as one in which a particular
reflection S, is made only if all Dynkin indices other than a,
are non-negative. One may minimize the number of .S, re-
flections by using a bottom-priority series. The long-weight
procedure is related to a bottom-priority series, since the S,
reflection is made only when all Dynkin components other
than a, are non-negative.
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(3) The eighth Dg simple root is used implicity: In the
bottom-priority series discussed above, one optimizes (re-
flects until the Dynkin indices are non-negative) with re-
spect to the seven D; roots of the Eg simple root set before
and between S| reflections. This optimization does not affect
the first component in the orthogonal basis, but leads to the
optimal signs and ordering of the last seven components.
However, in the procedure of Sec. IV D, one orders all eight
orthogonal components. This is equivalent to optimizing
with respect to all eight Dy simple roots, the seven of the E,
setand also 1, 2 _. This forces one closer to the top in positi-
vity., The long-weight procedure is equivalent to starting
fairly close to the top, and then using a bottom-priority Dyn-
kin reflection series, with all reflections except .S, made auto-
matically.

I illustrate the above points by considering the weight
7 of Eq. (4.7). If one constructs a Dynkin reflection series
choosing always for S; the smallest i such that g, is negative
(top priority for S;) 5 of the 47 reflections needed to obtain
the dominant E; weight are S, reflections. If one uses S, with
bottom priority, 47 reflections are still required, but only two
are S, reflections. The weight preceding the first S reflection
is [£(1533311 — 1)]. If one uses the procedure of Sec.
IV D, the weight preceding the first .S, reflection is
[4(5333 111 — 1)1, and only one S reflection is needed.

Next, I give the proof that the long-root procedure never
requires more than two .S, reflections. It is convenient to
define indices g; by the equations,

si=hf &=/ &= —fi 2<i<7). (5.1)
As seen from Eq. (4.3a) the value of a; is given simply as
1 8
a1=——2gi. (5.2)
2 i=1
If S,(g) = g', the transformation equations are
gl =g —iay. (5.3)

If a weight is D dominant, the conditions of Egs. (4.1a) and
(4.1b) may be written

lg:1>18: 115
g1>07 gi<0’

(5.4a)

for 2<i<7. (5.4b)

If g4 #£0, the sign of g, is the signature of the class.

We may start the iteration procedure with a D-domi-
nant weight. In the following argument, F; and G, denote the
Jf; and g; values of the original D-dominant weight, while G |
and G [ denote the g; values immediately after the first and
second S| reflections, respectively.

If the original a,, determined from Eq. (5.2) with
g: = G,,isnon-negative, no S| reflections are required, so we
assume a, <0. One performs an S, reflection. If the new
weight (G') isnot.D dominant, one may makeitD dominant
by rearranging the coefficients 2 through 8 and changing
pairs of signs. (At all stages of the procedure g,>|g;|, for
i>1.) These changes correspond to the Weyl reflections .S,
through .S,, associated with the Dg roots. Since the value of
the new a, does not depend on the order of the g;, I will not
reorder the g,’s, but consider only the sign changes. A weight
g (with g,>|g;|) may be considered D dominant if either all
g: are nonpositive (for /> 1), or exactly one of these g; is
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positive, and this g; has a magnitude no greater than that of
any other g,.

Wereturn to the S, -reflected weight, G '. Because of Egs.
(5.4a), (5.4b), and (5.3),

G!<G,,, for (i>1). (5.5)

One may make G’ D dominant by one of the four following
sign-change procedures:(a) no sign changes, G ' is already D
dominant; (b) two sign changes, one changes the signs of G }
and G ;; (c) four sign changes, one changes the signs of G ¢,
G¢, G5, and G§; or (d) six sign changes, one changes the
signs of all G | except G | and G ;. For example, suppose that
G;,G4,G,,and G arenegative, whileG{,G;,and G | are
positive. One then changes the signs of G; and G ; and, if
G ¢ > |G|, one also changes the signs of G§ and G ;.

We consider the four cases separately, and denote by a;
the value after the appropriate sign changes are made. In
case (a) itis easy toseethata; = — a,. Thisis positive, so G’
is E dominant. The one S, reflection is sufficient. In case (b)
a short calculation yields

a; =F, —F,.

This is non-negative, so the D-dominant weight is also E
dominant. The one S, reflection is sufficient. In case (d),
after the six sign changes are made, a calculation shows that

a;=F —F,.
This is non-negative, so the one S, reflection is sufficient.
In case (c), after the four sign changes are made, a; may
be negative. If this occurs one performs a second S, reflec-
tion, applying the rule of Eq. (5.3) after the sign changes are
made. Because the last four G | have been reflected, the new
2,8 indices form an asymmetric pyramid pattern, i.e.,

Gi<G5<G;, Gi<G7<G{<Gy. (5.6)

Again I do not reorder the columns. A calculation shows
that the new g; and g, indices are

G§’=%[(F2—F1) + (F,—Fy)],
thslzé[(F(,—Fs) +(F3‘F7)]

These are both nonpositive. Because of this and Eq. (5.6),
the only components G/’ (besides G {') that might be posi-
tiveare G { and G 7. It follows thatif G " isnot D dominant, it
may be made D dominant with only one pair of sign changes.
However, it was shown in case (b) above that when one pair
of sign changes leads to D dominance, the resulting value of
a, is non-negative. Therefore in case (c) the second .S, reflec-
tion is sufficient. This concludes the proof.

The long-weight procedure is related closely to the pro-
cedure used in Sec. IV C to compile Table II. It is easy to
show that weights requiring 0,1, and 2 S| reflections in the
long-weight procedure are those labeled dominant, primary,
and secondary, respectively, in Table II.

In order to illuminate some of the procedures discussed
here, I will give a short discussion of the rates at which differ-
ent quantities approach their asymptotic limits as one con-
siders Weyl classes with longer and longer weights. A few
definitions are useful. If & is a Weyl class of an algebra &7,
& o is defined as the algebra obtained by writing the Dynkin
diagram for .« and deleting each circle (with its connecting
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lines) that corresponds to a positive Dynkin component of
% . Thus for the class {38} of E;, o7, is 4, XA4,. It is well
known that the number of weights in the Weyl class € is
given by

N(€)=N(L)/N(L ), (5.7)

where N(./') is the number of reflections in the full Weyl
group for the algebra .« [If the diagram for .&, contains no
circles, N(.«/,) = 1.] For convenience I list below the sizes
of the Weyl groups for the 4, D, and E algebras:

N(4,) = (n+ D)},

N(D,)=n12""1,

N(Es) =27-3%5, N(E;) =2'3%57,
N(Eg) =2'%-3°-5%7.

The size of an E; Weyl class approaches its limit slowly.
The sizes of all the classes in Table Il are many times smaller
than N(Eg). The shortest class such that N(%€' ) = N(Ey) is
the M2 = 620 class with dominant weight shown in Eq.
(4.8).

Similarly, the number of Dy classes in an E; class ap-
proaches its limit slowly. When all the E; Dynkin compo-
nents are positive, this number is N(Eg)/N(Dg) = 135. It is
seen that all the classes of Table II are far from this limit.

We next consider the Dynkin reflection series of Sec.
IV A. Let N, (€ ) be the number of reflections necessary to
proceed from the most negative weight of class % to the
dominant weight. This number is given by

Ne (€)= P(A) — P(y), (5.8)

where P(.2/') is the number of positive roots in the algebra
&, and 7, is defined as before. It is seen from Eqgs. (5.7)
and (5.8) that N (%) is equal to its maximum value (120)
only when N(%') is equal to its maximum value. However,
the nature of Eq. (5.8) is such that even for short classes N
is on the order of 120. Consider, for example, the M2 =6
class {6}; N {6} = 120 — P(E,xA,) = 83.

Finally, we consider the asymptotic behavior of the clas-
sification procedure of Table II and related long-root proce-

1222 J. Math. Phys., Vol. 28, No. 6, June 1987

dure. I denote by F,, F,, and F, the fractions of the weights
in a class that are dominant, primary, and secondary, in the
sense of Table II. An analysis shows thatif @, >0, F, = ,
F,=8,F =8&;ifa, =0, F; >}, F;, <# Thus the aver-
age number of S| reflections necessary in the long-root pro-
cedure (F, 4 2F,) is equal to its asymptotic value of 1.51
whenever a, > 0. This occurs for many short classes, such as
the class with M 2 = 4. This argument shows why the long-
root procedure does not get more difficult or time consum-
ing as the weight lengths become large.
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Among the nonlinear spinor representations of the pseudo-orthogonal rotation groups
presented in a preceding work, those ones are considered, whose carrier spaces are isomorphic
with group spaces. The general element of such groups is written as a product of one-
parameter subgroups, allowing, for the SO(v,v) and SO(v + 1,v) cases, to write explicitly the
nonlinear spinor components in terms of independent intrinsic coordinates satisfying the

Cartan’s quadratic constraints.

I. INTRODUCTION

In a recent work,! done in collaboration with Raczka,
we have introduced a whole class of nonlinear spinor repre-
sentations of complex and pseudo-orthogonal groups, show-
ing also that they give rise to a natural generalization of the
concept of pure spinors introduced by Cartan.” The distin-
guishing characteristic of pure spinors is that their compo-
nents are not all independent but satisfy some quadratic con-
straints. Exploiting this fact we have been able, in a
subsequent work,’ to write a set of nonlinear spinor wave
equations for the SO(v,v) and SO(v + 1,v) groups, which
simplify in a drastic way when expressed in terms of the
intrinsic spinor coordinates (which resemble a kind of “gen-
eralized Euler angles” for the considered groups). The key
point in getting this result has been the possibility of explicit-
Iy writing the generic element of the complementary set C,
by which the pure spinor space can be parametrized (see
Refs. 1 and 3 for more details), as a product of one-param-
eter subgroups.

In this paper we want to show how this result has been
achieved, allowing us to write explicitly all the pure spinor
components in terms of the independent intrinsic ones in
such a way that the quadratic Cartan relations are recov-
ered.? We have limited our analysis to the pseudo-orthogo-
nal groups SO(v,v), SO(v + 1,v), SO(v + 1,y — 1), and
SO(v + 2,»¥ — 1). In fact, from Ref. 1 it follows that these
are the only (real) cases in which the carrier space of the
nonlinear spinor representations may be represented—up to
a set of Haar measure zero—not simply as a homogeneous
space but as a group space. This carrier space is obtained by
the action of the considered pseudo-orthogonal group G on
the standard spinor ¢¥,, (chosen to be the highest-weight
eigenspinor). If we denote by g the Lie algebra of the group
G, by h the Lie algebra of the stability subgroup H of ¢, , and
by ¢ the set of generators complementary to /4 in g, we see
that, when G coincides with one of the above-mentioned
groups, ¢ is also a Lie algebra and the complementary set Cis
a group, obtained—up to a set of Haar measure zero—by
exponentiating ¢ (see Ref. 1 for a more detailed analysis).
Therefore the basic technical problem we are confronted
with here is to write explicitly exp(c¢) as a product of the one-
parameter subgroups obtained by exponentiating the opera-
tors of c.

In Sec. II we give a detailed analysis of the SO(v + 1,v)

1223 J. Math. Phys. 28 (6), June 1987

0022-2488/87/061223-08$02.50

case, taken as a prototype, while we simply sketch the re-
maining cases in Sec. IIL. In Sec. IV for the SO(v,v) and
SO (v + 1,v) cases we write the pure spinor components ex-
plicitly in terms of the intrinsic coordinates, leaving apart
the remaining two cases which present major technical com-
plications but no new interesting features. Finally in Appen-
dix A we give the main features of the Zassenhaus formula,*
on which all our calculations are based, and in Appendix B
we present some cumbersome relations giving the “general-
ized Euler angles” of the SO(v + 2,v — 1) case. Notations
and conventions are the ones introduced in Refs. 1 and 3.

Il. THE SO(v +1,v) CASE

The complementary subalgebra ¢, which we are going to
exponentiate in the form of a product of one-parameter sub-
groups, isa [1+ (;*') ]-dimensional solvable Lie algebra
with

(;/) generators Q¥ = — Q% k#l=1,..v, (2.1a)
v generators FX, k=1,..,, (2.1b)
1 generator l~), (2.1¢)
satisfying the following commutation relations!:
[0¥ Q™1 =0, klmn=1,..wv, (2.2a)
[D,0”] =0, r#s=1,.v—1, (2.2b)
[DF1=0, r=1,.,v—1, (2.2¢)
[FKQ™ =0, kilm=1,.,, (2.2d)
[D,Q"]=—Q" r=1l.,v—1, (2.2e)
[DF*] = —F*, (2.2f)
[FEF') =20%, k#l1=1,.,m. (2.2g)

In order to get an explicit realization of this algebra we
can express the generators (2.1a)—(2.1c) in terms of the ba-
sis elements {Hy,H; ,H;. }, j = 1,...,v, of the Clifford algebra
R, . ... satisfying the anticommutation relations

{H ,H}=2g.1, rs =01,.v1,.., (2.3a)

where
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0 i (2.3b)
=110 ) :
i1, o
i.e., welet
QM= —1[H.H. ], k#l=1,.v, (2.4a)
Fr= —\[H, H,], k=1, (2.4b)
D= —\[H, H,)]. (2.4c)

[This basis, connected with the nondiagonal metric tensor
(2.3b), is the so-called Witt or isotropic basis used by Car-
tan.?]

Following Cartan,” we provide an explicit realization of
the so(v + 1,v) algebra, and then of its subalgebra c, by rep-
resenting the Clifford algebra’s generators H’s by 2" x2*
matrices as follows:

L 0, for jeiyiz....i,,

H. hEipf 2.5
(H)is, {1, for j&i,,is,....0,, (2.52)
0, for jeiis,...,i,,

()i ‘P={ Mvtoly (2.5b)

2 1, for j&iyiz,....ip,
(Hy)iy i ™ o= (= )7, (2.5¢)

(A
all other matrlx elements being zero. Here we have labeled
the 2¥ rows and columns & la Cartan,? i.e., using the com-
pletely skew-symmetric set of indices

p=0,1,.,v, g, =12,y

(where the index *“0” means that no index appears).
Let us define the general element of the complementary
subalgebra ¢ as

hiy i, iy (2.6)

X:=aD+ z Clek‘f‘szFk

k<l=1

and let us separate the generators commuting with D from
the other ones, i.e., let us write

2.7)

X=U+v, (2.8)
with
- v—1 - v—1
Ui=aD+ 3 ¢,0°+ S fF, (2.9a)
re<s=1 r=1
v—1 - ~
Vi= Y ¢, 0"+ £ F" (2.9b)
r=1

If we now apply the Zassenhaus formula (A1) to exp X, we
get

exp X = exp(U + V) = eVe"ee- - -, (2.10)
where C,,C;,... are defined in terms of U and ¥V in Appendix
A. Then the following lemmas hold.

Lemma 2.1: All multiple commutators with any num-

ber of U’s and more than one ¥ are identically zero.
Proof: From Egs. (2.2a)-(2.2g) we have

[l [VULUL.1Ul=a"V—2na"''S £ £,5",

. r=1
n times

(2.11)
but from Egs. (2.2a) and (2.2d) we have that
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[@™V]=0, (2.12)

and thus the lemma is proved. v
Lemma 2.2: The C,,’s appearing in Eq. (2.10) are given
explicitly by

r=1,.,v—1,

1 -~
c, =___[ np B
=T Lo
v—1 -
+ E a"“(acW—an,fv)Q’”],
r=1
n=12,.... (2.13)

Proof: From Eq. (A16), with x and y replaced by U and

V, and from Eq. (2.11), Eq. (2.13) follows. v
Furthermore, from Refs. 1 and 2 we know that
(H,)*=0; (2.14)

therefore the following lemma holds.
Lemma 2.3: We have that

V2=0=C,C,=0=VC,, Vrs=23,.. (2.15)

Proof: From the definitions (2.1a) and (2.1b) and from
Egs. (2.9b), (2.13), and (2.14), Eq. (2.15) follows. v

Now we are ready to write explicitly the infinite product
part of Eq. (2.10), by means of the following proposition.

Proposition 2. 1: The infinite product part of Eq. (2.10)
is given by

CopCs.

v—1
eve =148 fVF”+Z[ IC,V

r=1

_2—-————( 1)‘eJrlffv]Q’" (2.16)

Proof: From Eqgs. (2.15) and (2.13) we have

o a 1 — o~
eCIeC""=]l+ZC,,+1=1+e afVFV
n=1 a
e —1—a
+ > |0
,;1 04
a—1)e* + 1 = .
—2(—)2—+-*frfv o
a
(2.17)
then, taking into account Eq. (2.15) and (2.9b), Eq. (2.16)
follows. v

For the remaining exp U factor we have the following
proposition.

Proposition 2.2: The exp U factor in Eq. (2.10) is given
by

_1 st
exp U= (H ef’F)( H gl 1 I0C )e‘w (2.18)
s<t=1
Proof: Let us write
U=U +U, (2.19)
with
v—1
Up=aD+ Y ¢, 0" (2.20a)
r<s=1
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v—1

=3 fF; (2.20b)
r=1
then, since from Egs. (2.2¢) and (2.2d)
[U,,U,] =0, (2.21)
we have
eV = eVl = %", (2.22)

Taking into account Egs. (2.2a) and (2.2b) we get

v—1 Hrs =
el = < I &2 )e"D, (2.23a)
res=1
while, using Eq. (2.2g), we have
v—1 oy v—1 .
eV = ( 10 ef’F> | e‘fsf'Q"). (2.23b)
r=1 <t=1

Inserting Eqs. (2.23a) and (2.23b) into Eq. (2.22), and
taking into account Eqgs. (2.2b) and (2.2c¢), the proposition
is proved. v

Now we are ready to give the final form of exp X in the
following theorem.

Theorem 2.1: The general group element obtained by
exponentiating the complementary subalgebra ¢ of the Lie
algebra so(v + 1,v) is expressed in terms of one-parameter
subgroups as follows:

= [ o] 11

exp (alm Q I ) ] eaD

lam=1
(2.24)
where
&, =.fy9 r= 1,...,V— 1, (2.253)
g:=[(1—e */alf, (2.25b)
d,= — fis,: =c"—€e(s—r)ff, r#s=1,..v—1,
(2.25¢)
arv = -—c~iw: = [(1 —e_")/a]c,,,

+2[l—a—e9/a?1f.f,, r=1,.v—1.
(2.25d)
Proof: Inserting Egs. (2.16) and (2.18a) into Eq. (2.10)

and using the relation

(@) AZ)
e (F" e =e T ) r=1,.,v—1, (2.26)
obtained from Egs. (2.2e) and (2.2f), the theorem is
proved. v

Remark: The relations (2.25a)—-(2.25d) connecting the
parameters (g ,d, ) to the parameters ( f; ,c,, ) are analogs
to the ones expressing the Euler angles in terms of the stan-
dard parameters of the SO(3) group elements taken as ex-
ponentials of the so(3) Lie algebra (keeping in mind the
qualitative differences between the two cases).

1. THE SO(v,v), SO(v+1,v—1), AND SO(v 42,v—1)
CASES

In this section we want just to sketch the main features
of the remaining pseudo-orthogonal cases (in which the
complementary set C has a group structure), leaving apart
as much as possible all those technical details which can be
recovered by analogy in the preceding section.
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A. The SO(v,v) case

This case can be considered as a subcase of the
SO(v + 1,v) case in which all F * generators are deleted. Let
us denote the general element of the complementary subal-
gebra ¢ as

Y:=aD+ S Q™.
k<l=1
Then we have the following theorem.
Theorem 3.1: The general group element obtained by
exponentiating the complementary subalgebra ¢ of the Lie
algebra so(v,v) is expressed in terms of one-parameter sub-
groups as follows:

3.0

e’=| ] exp(é,dé"’)]e“” (3.2)
kali=1
where
Cry = —Copi =Cpy Fr#s= lL.,v—1, (3.3a)
é,=—0C,:=[(1—e"%/ale,, r=1,..v—1.
(3.3b)
Proof: Put all f,=0,r = 1,...,v,in Egs. (2.24), (2.25¢),
and (2.25d) of Theorem 2.1. v

B. The SO(v 41,v—1) case

In this case the complementary subalgebra ¢ is a
[14 (G*")]-dimensional solvable Lie algebra with

(V; 1) generators Q= — Q%= _H,.H,.,
k#1=2,., (3.42)
v—1 generators C'"'= — }(H, +H1,)H,,,} o
v—1 generators D" =i(H, — H.)H,., e
(3.4b)
(3.4¢)
1 generator B= — (/)[H,H, ], (3.4d)
1 generator D=1[H,.H, ], (3.4e)

satisfying the following commutation relations:

[D,07]= —-Q", r=2.v—1, (3.52)
[pC™)=-C", (3.5b)
[DD"™]=—-D", (3.5¢)
[BC"]1=D", (3.5d)
[(BD"]= -C", (3.5¢)
[C*CV] =1 Q"’ kil=2,.w, (3.56)
[D*DY] = lel (3.5g)

all other commutators being zero.
Let us define the general element of the complementary
subalgebra ¢ as

Wl=a5 +B§+ z Cklék,

k<l=2
+ 3 e, &+ 3 d,Bm (36)
m=2 n=2
Then we have the following theorem.
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Theorem 3.2: The general group element, obtained by
exponentiating the complementary subalgebra c of the Lie
algebra so(v + 1,v — 1), is expressed in terms of one-pa-
rameter subgroups as follows:

ewzeﬂﬁ[ f[ exp(éké”‘)”ﬁ exp(d,D ”)]
fis

k=2

x| 1L

men=2

exp(cm,.Q'"”)] (3.7)

where

¢,: =_1_(smﬂ
2

c, + 1—cospB d,), r=2,...v—1,

B B
(3.8a)
3‘v:=T+1——;{[0!COSB +Bsinf— ae “lc,
o
+ [asinB—fBcosB + Be~*1d,}, (3.8b)

aszz—l-(Sin'B d —L1—c0sh cs), s=2,v— 1,
2\ B yis
(3.8¢)
gv:=?—i?{[acos/3 +Bsinff— ae~%1d,
—[asinB—BcosB + Be %]c,}, (3.8d)
8, = — 8,1 =0Cy +ﬁ 2;12113 (d,c, —d;c,)
————iﬁcg—sﬂ—e(s——r)(c ¢, +d.d,),
r#Es=2,..,v—1, (3.8¢)
e, = —20, = L1=e”? [c,v ——1—(c,dv —c,d,)
a 2B
1 {—[asinf—Lcosf + Be 7]

+_.—_.._
2B(a* +B%)

X {(c,c, +d,d,) + [acos B +Bsinff— ae”“]

X (c,d, —c,d)}, r=2,.. (3.8)

with e(x) = + 1 for x320.

Proof: Following the same procedure used in Sec. II and
by repeated use of the Zassenhaus formula (Al) the
theorem is proved. v

V— 1’

C. The SO(v 42,v—1) case

This case differs from the preceding ones since the com-
plementary subalgebra ¢ is no more a solvable Lie algebra
but a semidirect sum of the so(3) simple Lie algebra with a
solvable Lie algebra. Its [1 + (3 *?)] generators are those
given by Egs. (3.4a)—(3.4e) plus

(v—1) generators F*= — H,_ . H, k=2,..,
(3.9a)

1 generator H'= — 1(H, + H,)H,, (3.9b)

1 generator K ' =i/2(H, — H,.)H,. (3.9¢)

They satisfy the commutation relations (3.5a)-(3.5g) plus
[D,F*] = —F7, (3.102)
[BH'|=K', (3.10b)
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[H'.K'] =B, (3.10¢)
[KLB]=H" (3.10d)
[H'F*] =2C"% (3.10e)
[KF*] =2D %, (3.10f)
[F*F'] =20%, ki=2,.v, (3.10g)
[H,C"] = —iF, (3.10h)
[K,DV] = —F, (3.10i)

all other commutators being zero.
Let us define the general element of the complementary
subalgebra c as

Z:=aD+ BB+ i Cul "’+2cc“<

k<l=2 k=2

+YdD"+ Y f F"+hH'+ kK"
- me (3.11)
Then we have the following theorem.

Theorem 3.3: The general group element, obtained by
exponentiating the complementary subalgebra ¢ of the Lie
algebra so(v + 2,v — 1), is expressed in terms of one-pa-
rameter subgroups as follows:

=eJ[ f[ exp(EkE'”‘)] [1:[ exp(&’,f)”)]
k=2 =2
x[ i exp(}’mF'")H i
m=2

kal=2

CXP(Z‘H é kI) }eaD
(3.12a)

where J denotes the general element of the so(3) simple Lie
subalgebra

J-=BB+hH'+ kK, (3.12b)

and the coefficients ¢, ;z',, }m, ¢, are given explicitly in
terms of the coefficients of Eq. (3.11) in Appendix B.

Proof: Following the same procedure used in Sec. IT and
by repeated use of the Zassenhaus formula (Al) the
theorem is proved. v

Remark: The group element e’ is easily factorized into
one-parameter subgroups by means of the usual expression
involving the standard Euler angles.

IV. INTRINSIC SPINOR COMPONENTS FOR PURE
SPINORS

In this section we give the pure spinor components for
the SO(v,v) and SO(v + 1,v) cases in terms of the “general-
ized Euler angles” appearing in the complementary set C,
once it is expressed as a product of one-parameter subgroups
as in Egs. (2.24) and (3.2). We prefer to start with the
SO(v + 1,v) case, since the SO(v,v) case can be easily de-
duced from it, taking into account Sec. IIT A.

A. The SO(v+1,v) case

Choosing the same spinor representation appearing in
Ref. 1, we see that the generic SO(v + 1,v) pure spinor is
given by

¥ =e"y,, (4.1)
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where X is given by Eq. (2.24) and ¢,, is a 2"-component
spinor with all components zero but the first one equal to
unity. Following Refs. 1 and 2, we label the 2¥ components
of ¢ with a set of completely antisymmetric indices, i.e.,
¥;,...; with 0<r<v and 1<i,,...,i, <v. Then we have the fol-
lowing lemmas.

Lemma 4.1: The group element & of Eq. (2.10) can be
rewritten as

v—1
= (1+ > g F* + 2 88.0 )

[ I a +wk,Q"’)] e°D, (4.2a)
ki=1
where
Wy = — @y = ([1 +g,8), r#s=1.,v—1,
(4.2b)
©,, = —@,,:= %3,‘,, r=1L.,.wv—1 (4.2¢)

Proof: From Egs. (2.2g) and (2.20b) we have that

v—1

=14+ Y fF, (4.3a)
r=1
and from Egs. (2.2a), (2.2b), and (2.20a)
v—1 _
o =[] (1 +—c,s )]e‘w. (4.3b)
rs=1

Furthermore, from Egs. (2.16) and (2.26)

eaﬁ(eVeczeC3_ .. )e —ab

— v—1 ~ v—1 ~
=(+&F) ] exp(w,vQ"’)][ II exp(@,, Q") |-

r=1 r=1
(44)

Inserting Eqgs. (4.3a) and (4.3b) into Eq. (2.22) and then,
together with Eq. (4.4), into Eq. (2.10), with the help of the
relation

FFRI=Q%, k#£l=1,.,, (4.5)
and of Egs. (2.25a2)—(2.25d), the lemma is proved. v
Lemma 4.2: The even components of ¢ can be written as
by =e]| L+ nk,Q"'>]¢,,.] . (462),
kil=1 i

where
My = — Nop! =@, TF#ES=1Ll.,v—1, (4.6b)
N = —1N,: =0, +ig8, r=L.,v—1, (4.6c)

while the odd components of ¥ can be written as

b,
a/Z[(z g F )LH (1+wk@"’)]¢m]hmizw~

k=1 =1
4.7
Proof: From Refs. 1 and 2 we have that
Dy,, =1v,,. (4.8)
Furthermore, from Refs. 1 and 2 we have that
(H,)>=0, Vi=1,.y, (4.92)

and then, from Egs. (2.1a) and (2.1b),
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(FH?, Ykim=1,...

(4.9b)

Since we know from Refs. 1 and 2 that the only nonzero
matrix elements of H, have the form

(Iij')k.'”k,.l =1, ja(ky..k.);

ékléml=0=éklﬁl=0=

kyook

Jikyenk, = 1,v,

r=0,..,v—1, (4.10)

we see from Egs. (2.1a) and (2.1b) that each ¥ in Eq.
(4.2a) “creates” a pair of distinct indices for i, while each
F* (since H,is a diagonal matrix) ‘“‘creates” only one index
for 3. After separation of the even and odd pieces in Eq.
(4.2a), the lemma is proved. v

Let us introduce the notation for totally antisymmetric
tensors

1
T[ TRt

i, '
v a0

(—1)"73,,;.,‘,,,» (4.11)
where the summation is extended over all permutations of
the indices /},...,f, and ( — 1)™ denotes the signature of the
given permutation. Then we are ready to present the main
proposition of this subsection.

Proposition 4.1: The generic non-null component of the
spinor ¥ of Eq. (4.1) with an even number of indices is given
by

Vi, = (20— (4.12a)

while that one with an odd number of indices is given by

-d.

bp—igp]?

1)%e?d,, , d,

byiy

Yipotyy,, = — (2q+ DNe*%g,dy, ody s
(4.12b)
where
dy = —dy: =‘~1k1 +g g€l —k), k#l=1,.v,
(4.12¢)

with d,;, and g, defined by Egs. (2.25a)-(2.5d) [and
(—Dil=1].

Proof: Let us begin by proving Eq. (4.12a). Taking into
account Eq. (4.9b) we can write

[ I 1+ 7.8 |4,

kl=1

1+2 % Q" + 2
KiZ1
k<l

v
) k) ksl e
X 2 Nea, M, @@ 5 +
k'#1,9ék2¢l2=1
ky <k, <1y
Ii<l
v
(v/2]
+2 N1,
ky#ELE Rk FE ) =1
Ky <hieskiy gy <y

kool

h<h< <l

A kil 2 kw21
X Qb .. Qi ¥,

Inserting Eq. (4.13) into Eq. (4.6a) and taking into
account Egs. (2.1a) and (4.10) we see that ¢, ..., gets a
contribution only from those terms of Eq. (4.13) having p
Q’s with the indices being a permutation of (i,***i,), i.e.,
only from the terms of the kind

(4.13)
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13U
k1 k. 12 2p
1A e — (— 1) P H,H,---H, ,
Q Q ( ) (klll"‘kplp) bR h

(4.14a)

where Tr(Ql','l'."?.”kp,p) denotes the parity of the permutation
transforming the sequence (i;**‘i;,) into the sequence
(kyl; - k,1,). Taking into account Eq. (4.10), we have then

B ki .. 35 kelo A ) 4.14b
© ¢ '/Jm)i"“iz" _ﬂ-(klll'“kplp , (41457
and, using Eqgs. (4.6a), (4.13), (4.14b), and the definition

(4.11), the first part of the proposition is proved, with the
help of the relation

5 ( A )
| Ne,t, " Ny
Gk etinnizyy il K, o

.....

=2p— Dy, - Ny _1iap] 2 (4.14¢)

and of the definitions (4.6b), (4.6¢), (4.2b), (4.2¢c), and
(4.12¢).
Let us now rewrite Eq. (4.7) as follows:

4 4 d ~ jl"'jr.,
¢i|"'i2q+l = Z z (z ngk)_ . %l‘..j’,
r=0j,.J,=1 \k=1 Bohyg
(4.15a)
where
@j.--‘j,:zean” H (1 +wklékl)]¢m] (4.15b)
kiI=1 Jx]r

We see that 'Z'j."'jr isidentical to ¢, ... by of Eq. (4.6a) (non-
null contributions come for » even only ), once we substitute

N With @y, . Its explicit form is given by

jog, = 27 = D0, - R ARVAL (4.16)
Since H, is a diagonal matrix with
(Ho)iooi "= (= 1)% dpyend, = Loy, 5=0,...,
(4.17)

taking into account the definition (2.1b) and Egs. (4.10),
(4.16), and (4.17), we can write

29+ 1

1/’i.---i2q+, = Z (- l)kgik{bi,---fk---'
K=1

where a ” sign over an index means that that particular index
is missing from the sequence in which it appears. If we now
express the 1 components by means of Eq. (4.16) and we
take into account definitions (4.11), (4.2b), (4.2¢), and
(4.12c), we see that Eq. (4.12b) is also proved. v

Remark: From the explicit expressions (4.12a) and
(4.12b) it is easy to check that the pure spinor’s components
satisfy the quadratic relations presented in Ref. 2.

s (4.18)

B. The SO(v,v) case
In this case we define the generic pure spinor as
p=ey,., (4.19)
where ¥ is given by Eq. (3.2) and ¥,,+ is identical to ¢,, of
the preceding subsection. From Refs. 1 and 2 we see that ¢ is
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effectively a semispinor of the first kind, having all compo-
nents with an odd number of indices equal to zero. [ Any
second kind semispinor can be obtained by reflections of first
kind semispinors (see Ref. 2).]

As already mentioned in Sec. IIT A, this case can be
derived from the SO(v + 1,v) case, deleting all F* genera-
tors. We have then the following proposition.

Proposition 4.2: The generic non-null component of the
semispinor ¥ of Eq. (4.19) is given by

Vi, = (2P — DNe*?g,, -
with &,, given by Eqs. (3.3a) and (3.3b).

Proof From Egs. (2.3) and (3.1) we see that, if we let
fi=0,k=1,..v, we have

(4.20)

bp—1izp] ?

&y =e; (4.212)

then, since ¥,,,« =1,,, from Egs. (4.1), (4.19), and (4.21a)
we have that

(4.21b)

Then the only nonzero components of ¥55,,,, are given by
Eq. (4.12a), with the parameters d,; evaluated with f;, =0.
Taking into account Egs. (4.12¢), (2.25a)-(2.25d) and
(3.3a), (3.3b), we see that the proposition is proved. v

Remark: We want to stress that in Egs. (4.12a),
(4.12b), and (4.20) we have been able to write the nonlinear
(pure) spinor components in terms of the independent in-
trinsic coordinates, just because we succeeded in writing
both e and e” as a product of one-parameter subgroups. It
can be easily seen also that such a “factorization” of the
group elements of the complementary set C is absolutely
necessary for the realization of minimal covariant nonlinear
spinor wave equations associated with our nonlinear spinor
representations (see Ref. 3).

¢50(v,v) = ‘/’50(v+ 1,v) l{fkso}'

APPENDIX A: THE ZASSENHAUS FORMULA

In order to make the paper as self-contained as possible,
we give here a brief account on what is presented in Ref. 4 on
the Zassenhaus formula, and derive some straightforward
consequences to be used in our analysis in the main text.

Let R be a free ring with two generators x, y and with
rational coefficients. Then we have the following theorem.

Theorem A1 (Zassenhaus): There exist uniquely deter-
mined Lie elements C,, (n = 2,3,4,...) in R, which are exact-
ly of degree n in x, p, such that

Y = %0 YeCieCrn - oCre . (A1)

v

Here a rough definition of C, is that it is any linear
combination of multiple commutators of x and y, in which
the total power of x and y is n (see Ref. 4 for a more precise
definition).

In order to get the C,’s explicitly we have to introduce
the “curly bracket operator” { } having the following prop-
erties.

(i) It is a linear operator, i.c., for any two elements
F,F,eR and for any two elements c,,c, in the field of coeffi-
cients

{e.F) + ;B = {F} + e,{F,}. (A2)

P. Furlan 1228



(ii) Let x, for v = 1,2,...,n be any one of the generators.
Then for any monomial x x,* -x, we define

{xlxz"'xn}3=[['"[[xl,szxa]s---]yxn]’ (A3)
{x}:=x,, (A4)
{1}:=o0. (AS5)

Furthermore, the two following propositions are needed.
Proposition AI: Let G be a homogeneous Lie element in

R which is of degree n; then
{G} =nG. - (A6)
v
Proposition A2: If Gis a homogeneous Lie element and F
is any element of R then

{G*F} =0. (A7)

v

Then, applying the operator { } to both sides of Eq. (A1)
we get

{et’}=x+y
and
{e"e’e%eS..} =x +y + {xp} + {C,} + {xp*}/2!
+ {xC} +{yC} +{Cs} + .
(A9)

(A8)

By comparing terms of the same degree in Eqs. (A8) and
(A9), we get

{Gr+{}=0, (A10)

{C}+ =G+ {yC} + Hxp?r =0, (A11)
and so on, giving

C = —ilxyl, (A12)

G = —illx,yL,y] — ilx,»].x], (A13)
and so on.

If we now look at the relations (A10), (A11), and to the
analogous ones of higher degree, we see that

{C,} = —{xC,_.,} + (terms at least of degree 2 in y),
(A14)

i.e., from Eq. (A3) and (A6),

nC, = [C, . ,,x] + (terms at least of degree 2 in y).
(A15)

Iterating Eq. (A15) and using Eq. (A12), we finally get

C, = (l/n!)w yx1,x],...1,x]

n—1

+ (multiple commutators with y

appearing at least twice). (A16)

APPENDIX B: EXPLICIT FORM OF THE COEFFICIENTS IN THE SO(v 42,v—1) CASE

The relations connecting the coefficients ¢, , d I }m , €41 appearing in Eq. (3.12a) to the coefficients @, 3, ¢, ¢x , d,, of Eq.
(3.11) are rather cumbersome; therefore we prefer to write them explicitly in this appendix as follows:

. (2h cosp—1_ g ———S“‘P;P)f, + [1 + ——S‘“/'Z;” (h? +,32)]c,
P

2

P
: 2
+(hk 51np3“P .y COSP_21 _%p )dr’ r=2..v—1, (Bla)
p p
é, = 1—e c, 21 ~ (a Slnp—cosp—+—e“")(b’dv—2hfv)
a a’+p p
_ [_15_ 1 (a cosp  sinp, e )] [(B2+h?)e, + hkd, + 2kBf,] . (Blb)
ap a“ +p P p a
. —1 inp — inp — 0sp—1—1p2
T TES IR S P S TR A
P p P p
+[1+(ﬁ2+k2) s‘ﬂ’;ﬂ]d,, r=2.v—1, (Blc)
p
0= l—e~ d, _ 21 i (asmp—cosp+e‘“)(ﬁcv+2kfv)
a a +p P
_ [Lz_ - (a COSp L Smp L E )] [(B*+k2d, + hke, — 2hB ], (B1d)
ap® @ +p p p a
. 1 . _ . _ _ 1 _l 2
f',=|:1—'7(h2+k2) SmP3 p]f;_*_%(ﬂksulps p_hcosp > Zp )C,
p P P
: 2
_i(gh Snp—p | pLSp—1-4p )d,, P=2— 1, (Ble)
2 p p
: l1—e° 1 1 ( sin p _ )
=€ pi t (aMP osp e (he, + kd,)
5 a 2 2 a?+p? p P
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o (a2 3224 E L f(hd, —ke,) — B+ 471, (B1D)
ap® &’ +p P P a 2
H _ _ 1 2 _1 1 2 1
b= — b=, — 2Ly g SOL AN N f 2y, 5 BRI (5 ke, )
P P P 2
_sinp—p (—;—Bcﬂ + kf”)] _ H- e +dd) +jf,j§]e(s —r), rks=2v—1, (Blg)
P
¢, = —¢C :=—1—1_—ic LI aw—cosp—ke_“ (¢c,c, +d.d,+4f 1)
rv vr a r 2 a2+p2 p
_1—2_ 3 l 2 (a coszp + Slnp + ¢ )](th[rfv] + 2kd[rfv] _Bc[rdv])
ap® o’ +p P P a
_L[__Z_L_(am._.cosp_{.e_a)+f;:§!ﬁ][hk(crdv+cvd’_)
20° La? +p° p a
+ZBk(C,f; +cvf;) _Zﬂh(drfv +dvf;') —kz(C’.CV +drdv) —432f;-fv]’
r=2,.,v—1, (B1h)
I
where 'P. Furlan and R. Raczka, “Nonlinear spinor representations,” J. Math.

Phys. 26, 3021 (1985).
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2. p2 2 2 E. Cartan, The Theory of Spinors (Hermann, Paris, 1966).
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ciated with nonlinear spinor representations,” J. Math. Phys, 27, 1883

and (1986).
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Decomposition of the SO*(8) enveloping algebra under U(4) D U(3)
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The existence of a complete set of SU(3) tensor operators in the enveloping algebra of SO*(8)
is demonstrated. The analysis recasts a parallel analysis by Biedenharn and Flath [Commun.
Math. Phys. 93, 143 (1984)] concerning an SO(6,2) model for SU(3) in the isomorphic but

simpler framework of an SO*(8) model.

I. INTRODUCTION

It has been shown independently by Biedenharn and
Flath' and Bracken and MacGibbon? that the fundamental
unirrep of SO(6,2) defines a model for SU(3) in the sense of
BernsStein et al.®> According to their definition, a representa-
tion space is called a model for a group G if it contains pre-
cisely one irrep from every equivalence class of irreps of G.

Exploiting the local isomorphism SO(6,2) ~SO*(8),
Le Blanc and Rowe* gave a Bargmann representation of the
SO(6,2) model for SU(3) which is simple, naturally unitary
with respect to the Bargmann measure, and readily ex-
pressed in a Cartan basis. Furthermore, taking advantage of
the natural embedding of the su(3) algebra in the so*(8) Lie
algebra through the subgroup chain

SO*(8)DU(4)DU(3)DSU(3),

where U(4) ~SO(6) X SO(2) is the maximal compact sub-
group of SO*(8), it was realized therein that the Cartan
generators of the so*(8) Lie algebra are the fundamental
Wigner operators as defined by Biedenharn and Louck (see,
e.g., Louck®) in contrast with the SO(6,2) model which call
for more complicated linear combinations of the generators
of its Lie algebra for their realization.

Since the fundamental Wigner operators of SU(3) are
the elementary building blocks for a complete set of basic
SU(3) tensor operators, it is appropriate to try to identify
the elements of this set in the enveloping algebra of SO*(8).
Such an analysis has been carried out by Biedenharn and
Flath' for the SO(6,2) model. The purpose of this paper is to
recast their analysis in the much simpler SO*(8) model
framework. Using only the elegant properties of the
Gel’'fand patterns required for the classification of the
U(4) DU(3) tensors arising in the enveloping algebra of
SO*(8), we rederive all their results in a simple deductive
and therefore more transparent way.

Il. REVIEW OF THE SO*(8) MODEL FOR SU(3)

A basis for the complexification of the so*(8) Lie alge-
bra is given (Le Blanc and Rowe*) in terms of two four-
dimensional Bargmann vectors (g,,; a = 1,2; u = 1,...,4)
and with summation over repeated indices by

1 a a
Cv=_ a, + au | ,V=l,4,
g Z(g“agav g g“) #

av

a

=ga,u 3‘g—+6ﬂv, (2.1&)
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gly glv
A, =—A, = , (2.1b)
# . gZ,u ng
a a
g, g1,
B,=—B, =4 = a“ PR (2.1c)
agz,; 98,

where (C,,, ) span the maximal compact subalgebra u(4) of
so*(8) and (4,,) and (B,,) are, respectively, Cartan rais-
ing and lowering operators. The u(3) subalgebra (C;) is
given by the restriction of the indices u,v in (2.1a) to
5,j=123.

We have the following commutation relations:

[Cuv’AyE] = (svyA,uS + (SV,SA”“

[CuvsBys] = —6,,Bs —8,:B,,, (2.2)

[BW’AV& ] =65 Cw + ‘Sw Csv — 5vr Cou — 5#6 Gy
Underu(4), 4 isa {1100} tensor, Bisa {00 — 1 — 1} tensor
while the elements of su(4) are the components of a
{100 — 1} self-conjugate tensor.

The lowest weight state for this fundamental representa-
tion of so*(8) is clearly given by the Bargmann vacuum

(g]0)y =1, 2.3)

which carries an unirrep {1111} of u(4).

Since the raising operators (4, ) transform under the
adjoint action of u(4) as the components of a {1100} tensor,
the polynomials of degree 4, in (4,,, ) transform as the com-
ponents of a {4,4,00} tensor. These tensors then reduce un-
der u(3) according to the branching rule

Ay
u(4)lu(3): {#,,,00}! Z {h,n,0} 2.4)
hy=0
given by the usual betweenness conditions of the corre-
sponding Gel’fand patterns. Since there is no multiplicity
involved in the SO*(8)1U(4) reduction, it follows that a
U(3) invariant subspace of this so* (8) representation space
can be uniquely labeled by its u(4)>Du(3) quantum

numbers
A, hy 0 0
h, hy 0
n

=P "h3(4)|0),

(2.5a)

where P g""‘z}(A) is a polynomial of degree 4, in the raising
operators (4,,, ) and 7 stands for any appropriate scheme to
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label components of the corresponding su(3) unirrep
{h,h,}. For example, 77 can stand for either the usual lower
Gel’fand pattern or for the basis labels (§)LM (Le Blanc
and Rowe®) corresponding to a canonical SU(3)1SO(3) re-
duction. When 7 stands for an SU(3) lowest weight, we
have, from Eqgs. (4.7) and Eq. (6.13) of Ref. 4,
hy hy 0 0
h, h, 0
Iw
_ [ h,! ]I/ZCQQ' B m){ 1 Al ] 10)
hil(hy — hy)! hWh +1

_ 1

T [y 4 DR, — By)I]2

It does follow that the so*(8) unirrep {1111} decom-
poses under the successive restrictions

A'A4"="0). (2.5b)

so*(8)4u(4)u(3): {11111 3 {h,k,00}4 3 {A,1,0}.
h, hh
(2.6)

Thus the {1111} representation space for so*(8) contains
precisely one representative of every equivalence of SU(3)
irreducible representations. It is therefore, by definition, an
SU(3) model space (Bernstein ef al.?).

In the following sections, we identify in the enveloping
algebra of s0*(8) a complete set of SU(3) tensor operators
which act on this model space and which have well-defined
shift properties. In classifying these tensors, we shall make
use of the convenient and insightful labeling scheme by up-
per Gel'fand (operator) patterns introduced by Biedenharn
and Louck (see, e.g., Louck®) who showed that a complete
set of basic SU(3) tensors can be classified by means of oper-
ator patterns of the type

i 8, ]

"1 72 2.7
[ A5 hys hs )

J

_ 5, -

Vi Y2 = L+ hss
Lh13 hys hs; hy+ hs;

with

h33-_—F12+ rzz‘_hl '—h2<0. (2-13)
Note that, from (2.10) and (2.11),
7’1+7’2=51+52=Zhi3- (2.14)

Note also that for given values of A, =h; — hy;,
hy, = hy; — b33, 8, and 8,, there generally corresponds a
multiplicity set of tensors

8,
71(p) 72(p) ) (2.15)
hl3 h23 h33
which can be indexed by an integer 0<p<p,,,, With
vip)y=vi—p, v(p)=7v;+p, (2.16)
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with the usual betweenness conditions for y,, ¥,, and &,.
Such a pattern indicates that the corresponding tensor maps
the states of a U(3) representation {4 ,,4,,4,} into a repre-
sentation {4, + A,,4, + A4, + A,}, where
Ar=8, Ay=y,+7.—6,
By=hyy+hy+hy—y— 7
Thus it maps an SU(3) representation {A,A,} into a repre-
sentation {A; + A, — Ay, A, + A, — As).
To label a set of unit tensors for SU(3), Biedenharn and
Flath restricted the U(3) patterns (2.7) to the subset of the
type

(2.8)

I-‘1 1
F12 FZZ ’
h, h, 0
and declared the equivalence of the U(3) unirreps

{Ad Al ={, + Agds + Agds + A5}

in their model space. Thus they restricted to the subset of
patterns (2.7) with A5 = 0. For our purposes, however, it is
more appropriate to restrict to the subset with A, = 0. This
is because the SU(3) states of our model space carry U(3)
representations strictly of the type {1,,4,,0}; cf. Eq. (2.6).1t
follows that any tensor operator acting on the model space
must have shift A, = 0. We therefore classify tensors acting
within the so*(8) representation space by patterns of the
type (2.7) with the constraint

(2.9)

zhis =¥+ Y2 (2.10)

The corresponding shifts (2.8) are then given by
A1 = 51,
A;=0.

Our labeling is clearly related to that of Biedenharn and
Flath by

By =¥ +1.—6,=6,
(2.11)

rll + h33

Ty + hss s (2.12)

h2 + h33 h33

i .
pmax = mln(ﬂ - 51’?/; - h23’h23 - ﬁ’él - 7/; )9
(2.17)

where y] and 73, respectively, denote the maximum and
minimum (stretched) values of y, and 7, allowed by the
Gel’fand betweenness conditions. Thus a basic SU(3) tensor
can be identified by either of the two sets of labels

(713,733,733,0 4, £, (2.18a)

(h15h2361762’ P), (218b)

from which one readily reconstructs the corresponding op-
erator pattern.

It can be easily verified (cf. Proposition 4.1) that the
generators of the so*(8) Lie algebra have the following
U(3) tensorial and shift properties:
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AR s=(11), BRI s_ (11,
AF®: 5= (10), B~ 5= (-10),
Ci™: s=(on, CciP % s=(0-1.

Therefore the expressions for the fundamental Wigner oper-
ators are seen to be extremely simple in this model. Their
Hermiticity relations are also clearly apparent.

(2.19)

llIl. DECOMPOSITION OF A UNDER SO*(8) DU(4) DU(3)

We now proceed to the decomposition of the SO*(8)
enveloping algebra 4 under SU(3).
Proposition 3.1: Under SO*(8), 4 decomposes as

{4h 3 {00—p—pl, 3.1

where {00 — p — p} is a nonunitary finite-dimensional low-
est weight irrep of SO*(8).

Proof: B4, is easily verified to be the unique lowest
weight polynomial of degree p in the generators of the
s0*(8) Lie algebra. It satisfies the equations

[B...B5.] =0,

[C...B5] =0, u<v,

[Cll:B§4 ] = [sz,B1374 ] =0,

[Ci3.B5] = [CussB5s] = — pBE,. Q.E.D.
(See Biedenharn and Flath,' Proposition 7.3, for an equiva-
lent statement.)

Proposition 3.3: The decomposition of {00 — p — p} un-
der U(4) is given by the branching rule

SO*(8)1U(4):

{00 —p —pHi D

PLtP2t P+ ps=p

(3.2)

{01 + P3p1s — Pos

— Py — D3t (3.3)

Proof: The SO*(8) irreducible tensor {00 — p — p} de-

composes as a sum of U(4) Racah tensors T " for which
the U(4) lowest weight component is given by the product of
commuting factors

4
Thua}  Cr
T.*"=A%B5CHCL, Y p,=p.

v=1

(3.4)

Here 4,5, By, C,4, and C,,, are, respectively, lowest weight
components of U(4) tensors of rank {1100}, {00 — 1 — 1},
{100 — 1}, and {0000}. It follows that the coupling is

stretched and the resulting tensor T " is of rank {n,.}
with
hy=p +ps hu=py
hys= —p2—Ps.

hys = —p,
(3.5)

Q.E.D.

The decomposition of a U(4) tensor into a sum of U(3)

tensors is given by the betweenness conditions for the asso-
ciated U(4) DU(3) Gel’'fand patterns:

UIUG): {1 S hn Y, b g <hy <hi o
(3.6)
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Observe, however, that from any given p level U(3) ten-
sor in 4, we can construct other (“old”’) tensors at a higher p
level and of the same U(3) rank by multiplying it by arbi-
trary polynomials in (a) the U(1)CU(1) xSU(4)CU(4)
scalar

Con (3.72)
and (b) the U(1)CU(1) XSU(3) CSU(4) scalar
Ci=C;—31C,. (3.7b)

It is therefore sufficient to restrict consideration to the subset
of “new” p level U(3) tensors having no such factors. Let 7
denote the set of polynomials in the above two U (1) scalars.
Evidently 7 is the U(1) X U(1) enveloping algebra which is
an Abelian subalgebra of 4. The set of new U(3) tensors in A
is therefore isomorphic to the factor space 4 /I and we can
identify A /I with the space of SU(3) basic tensors.
Factors of the type (3.7a) are easily suppressed by set-

Dy= (3.8)

in Eq. (3.4); thus we restrict the set of p ( = 2% _, p, ) level
tensors to be subset with p = =2_ | p,.

The suppression of factors of the type (3.7b) can be
carried out as follows. Let

N
hiy

denote a U(3) CU(4) tensor in 4. Since C} is the U(3)
scalar component of the su(4) Lie algebra of (self-conju-

gate) rank {100 — 1}, the tensor (3.9) isan old U(3) tensor
if it can be expressed as a product

[1 0 0 —1]
0 0 0

(3.9)

x {hm —1 h2a his haa + 1}
hl3 h23 h33
(3.10)
Thus only the U(3) tensors {4, } C{4,, } for which
hs=h,, and/or hs3=h,, (3.11)
are new.

Finally, each U(3) tensor is also an SU(3) tensor of
rank

(i y=1{hys — hyshos — by} (3.12)

As an example, we trivially have for the p = 0 level the
identity operator

T 10000} _ 1, (3.13)
For the p = 1 level, we have the following three cases:
(p;) = (100), Tful;loo}NAlzy
U(4)1U(3): {1100}1{110} & {100}; (3.14)
()= (010), T{P-'-Y~B,
U(4)1U(3):
{00-1—-1}1{0—-1—-1}a{00—1}; (3.15)
(p)) = (001), TH*®-"~C,,
U(4)1U(3):
{100 — 1}1{100} ® {10 — 1} ® {000} & {00 — 1}.
(3.16)
R. Le Blanc and D. J. Rowe 1233



Therefore {100 — 1},.,, 1{100} {10 — 1} & {00 — 1}.

The identification of all new SU(3) basic tensors for p = 1 is

110 100}, . . . .
1110} @ {100} unambiguous and their lowest weight components are given

{1100}

new

{00 —-1-1},, {0~ 1—-1}e{00— 1}, (3.17)l by
1 1 0 0 0 0 -1 -1
1 1 0 ~Ai,, 0 —1 —1 ~B,,,
w Iw
1 1 0 0 0 0 -1 —1
1 0 0 ~A 4 0 0 —1 ~B,,,
ho hw (3.18)
1 0 0 —1 1 0 0 —1
1 0 0 ~Cla 0 0 -1 ~Cys,
Iw Iw
1 0 0 -1
1 0 —1 ~C3,
Iw
which, incidentally, close upon an Aw(3) algebra.
Observe that altogether, there are nine SU(3) lowest weight operators, old and new, at level p = 1;
C,u,u9C::9Aler14’B34’B239C14’C43’C13' (319)

In Biedenharn and Flath’s’ SO(6,2) ~SO*(8) realization, the twoold p = 1 SU(3) [also SU(3) invariant] tensors are given,
to within additive constants, by their “quark” and “antiquark” number operators (see also Bracken and McGibbon?).
Ignoring C,,,, and C7;, there are seven new SU(3) operators at the p = 1 level.

Consider now the p = 2 level. Since there are a total of nine p = 1 SU(3) tensors, we expect, at first sight, a total of 9 X 10/
2 =45 (old and new) symmetrical p = 2 SU(3) tensors. In fact, listing the complete set of U(4) DU(3) p = 2 tensors using
Proposition 3.3 and the betweenness conditions of the corresponding Gel’fand patterns, we find only 43 tensors. This implies
the existence of two linear relationships between the SU(3) quadratic tensors. Fortunately, there is no need to seek these
relationships as the 43 linearly independent tensors are obtained unambiguously from their corresponding U(4) parents [see
Eqgs. (4.7) and (4.9) below]. This obviates the necessity of imposing constraints, to restrict a linearly independent set, as in
Biedenharn and Flath’s analysis. Since our analysis is based on the U(4)1U(3) branching rules, we automatically obtain
linearly independent tensors and thus confirm a previous conjecture (Le Blanc and Rowe*) that a primary classification of
SO*(8) tensors under U(4) would eliminate any ambiguities in the identification of the SU(3) tensors in 4.

Applying the restrictions (3.8) and (3.11), we get the following new SU(3) tensors for the p = 2 level:

(p;) = (200): {2200},.,, +{220} ® {210} & {200},

) =0110): {11 —-1-1} {11 —1}e{10—-1}a{1—-1-1},

(p:) = (101): {210 — 1}, {210} 0 {21 — 1} @ {200} {20 — 1} & {11 — 1} & {10 — 1},

(p;) = (020): {00—2—2} . 1{00-2}0{0—1-2}o{0—2—2},

(p)=11): {10-1-2}  1{10=-1}e{10-2}e{1 -1 —1}o{1 —1—-2}a{00 -2} {0—1—2},
(p;) = (002): {200 —2},., {200} ©{20 — 1} & {20 — 2} ® {10 — 2} ® {00 — 2}.

There are thus 26 new p = 2 SU(3) tensors (as in Biedenharn and Flath?).
The classification of SU(3) tensors at any p level is thus very straightforward.

i
IV. SU(3) SHIFT PROPERTIES OF THE {h

b — P2

S0*(8) D U(4) D U(3) TENSORS A
33

Proposition 4.1: The SO*(8) DU(4) DU(3) tensors
(3.9) of the factor space 4 /I have well-defined U(3) shift
properties given by

,u4] _ [P1 +ps

—D> —p3}
ha

h13 h23

has a &, shift given by the difference between its number of
Cartan raising operators [ the number of 4 ’sin (3.4) ] and its

81 =Py —Ps=hyy + hag = Poy + Py (4.1a) number of Cartan lowering operators [ the number of B’s in
(3.4)],
6,=3 h, — 68, (4.1b)
g Z ? ! 51 =p, —p,

Proof: First, note that when acting on a state (2.5) of the
model space, the tensor (3.9)

1234 J. Math. Phys., Vol. 28, No. 6, June 1987

Then, note that the U(4) weight operator C,, has eigen-
value A, — h,,
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h, h, 0 0
Cua h, h, 0
i
h, h, 0 0
= (h, — hy) h, h, 0 ,
i

on a model space state. There is therefore no C,, weight
multiplicity in the model space as a U(3) invariant subspace
is unambiguously identified by the U(4) label {4,/4,00} and
the C,, weight (h, — h,).

Now the tensor (3.9) has a C,, weight given by

Zh;ut - Zhﬂ =2(p —p2) — zhiS'
m i i

The tensor will therefore take a U(3) irreducible subspace
{#,4,00} D{A,h,0} toanew U(3) irreducible subspace with
U(4) DU (3) labels given by

{h, + 6,k + 6,00} D{h, + 8,,h, + 6,0},
where, from the additivity of the C,, weight,

hi—hy=h ~h+> h, —Zhg,
which leads to the result ’

6, = Z hy — 6,

[cf. Eq. (2.14)]. We thus conclude that the tensor (3.9) has
unambiguous U(3) shift properties.

We now proceed to prove that the tensors (3.9), classi-
fied in the last section according to their SO*(8)
DU(4) DU(3) properties, can be put in one-to-one corre-
spondence with the abstract set (2.15) of U(3) shift tensors.

We first consider, as in Biedenharn and Flath,' the sub-
set of p level tensors of SU(3) rank {4, = p,h,} and shifts
(6,6,). [Recall from (2.18) that an SU(3) tensor can be
identified by either (4,3,/,3,433,61, p) or (h,1,,6,,6,, p)
with

hy=hyy—hs3, By =hyy — by, Zhi3=61+62']

From (4.1a) and condition 4, = p, we have two equations
for (p,,p,.p3), namely,

Pir+DPr+pys=hys—hy, py—pr=90; 4.2)
The third equation is given by the constraint (3.11). We
have either

his=hu=p +ps=>hy3=hyy,= —p, (4.3a)
or

hys=hy= —p,—p3s=>hiy=hy=p,. (4.3b)
Solving for the p,’s, we obtain a unique solution for a given
{h1,h2,6,,6,, p = 0} which we identify with the stretched
( p = 0) tensors of the abstract set (2.15) of shift tensors by
the following proposition.

Proposition 4.4: To every SU(3) tensor of rank {4,4,},
of given shift (8,,8,) and with stretched operator pattern, we

Q.E.D. can associate a p* = h, level tensor
J

[hw‘} _ {Pl + P P — P — D "Ps]

hi3 hl3 h23 h33 ’
with U(4) DU(3) labels given by

{hIS 8, — has h3s — (b3 — 81)} (4.4a)

hl3 h23 h33

if §, — h33<h,; and by

51 _h33 h13 - (hl3_6l) h33}

, (4.4b)
[ h13 h23 h33

if 8, — hys>hys.

Now, fora (p = h, — p) level SO*(8) DU(4) DU(3) tensor (3.9) with fixed SU(3) quantum labels {A,4,} to also have
fixed U(3) shift properties (8, ), we must have, from (3.11) and (4.1),

pi(p)=p1 —p, P2(p)=p>—p, Ps(p)=p3+p
We thus deduce the following proposition.

(4.5

Proposition 4.6: A multiplicity set of SU(3) tensors (2.5) will have a unique representative on the p ( = p, + p, + p3)
levels starting with the first (stretched) tensor on the level p = p* = A, and the following tensors, indexed by the integer p [ Eq.
(2.17) 1, on the consecutive p = p° — p levels. The corresponding U(4) DU(3) ({A,,} D{h;}) labels for these representa-

tives are given by

[h13 Oy —hy3—p hys +p _(h13_51)}’ (4.62)
his has his
if61 - h33<h13 and by
[51—h33 hy—p —(h3—6) +p hsz} , (4.6b)
hys has hys
1235 J. Math. Phys., Vol. 28, No. 6, June 1987 R. Le Blanc and D. J. Rowe 1235



if &, — A3 >hy ;.

It can be verified that for p<p,,.,, all labels are fully
consistent with the betweenness conditions of all [upper and
lower, U(4) and U(3)] Gel’fand patterns involved. Propo-
sitions 4.4 and 4.6 are equivalent to Theorem 8.12 of Bieden-
harn and Flath.!

Acting with the raising operator C,, on the expression
(3.4) for the U(4) Iw tensor component, we find that the
lowest weight component of the shift tensor (4.4a) is given
by

Clmm oAl B G RIC S, (4T)
where

cP{xl=x,

CPHX}=[CuX], (4.8)

C‘(é){X} = [Cy,[Cin,X 11, etc.

Similarly, acting with C,, and C,;, we find that the lowest
weight component of the shift tensor (4.6a) is given by

Cig: “hn‘hzs—p){A llsxz—hn—PB 3; h.u‘P}C}l"l‘s—& +h33Cll’3'

(4.9)

Similar expressions can be obtained for the tensors (4.4b)
and (4.6b). Equations (4.4), (4.6), (4.7), and (4.9) are also

1236 J. Math. Phys., Vol. 28, No. 8, June 1987

equivalent to Egs. (8.21) and (8.22) of Biedenharn and
Flath. The group theoretical structure of the tensors (4.9)
guarantees their linear independence (Draayer and
Akiyama,’ Le Blanc®).

Finally, note that although extremely elegant and sim-
ple, the SO*(8) ~SO(6,2) model for SU(3) does not offer
(as yet) a group theoretical interpretation for the U(2)
aspects of the upper pattern. Such an interpretation has been
given elsewhere by the authors (Le Blanc and Rowe®) using
an alternative model for SU(3) defined in a U(2) X SU(3)
Bargmann space.
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Indecomposable modules of the Poincaré algebra in an energy-cyclic angular

momentum basis
Romuald Lenczewski

Department of Mathematics, Southern Illinois University, Carbondale, 1llinois 62901

(Received 7 August 1986; accepted for publication 11 February 1987)

The universal enveloping algebra 2 = %2, % _.# of the Poincaré algebra iso(3,1) is
considered. Infinite-dimensional induced modules % , (I") are studied. Explicit formulas are
obtained for Z _ (') in the Poincaré-Birkhoff~Witt basis. Then a change of basis is performed
to an energy-cyclic angular momentum basis. For any ['eC?;, %2 _ (T") turns out to be
indecomposable. It can be represented as an infinite family of interacting Verma modules of
the Lorentz algebra so(3,1). Finite-dimensional modules can be obtained as quotient modules

of 2, (T') if 2Tz

I. INTRODUCTION

Indecomposable modules of physically relevant Lie al-
gebras have been suggested'~ for the description of unstable
particles. In particular, indecomposable modules of the
Poincaré algebra & =iso(3,1) may be useful in modeling
unstable particles of arbitrary spin and their interactions.
However, the Poincaré algebra, being a nonsemisimple Lie
algebra, does not lend itself as easily to methods of the repre-
sentation theory as semisimple Lie algebras (even in the case
of finite-dimensional modules). On the other hand, its maxi-
mal solvable subalgebra is Abelian, hence it can be viewed as
mathematically relatively easy to work with.

Infact, & is a semidirect product of the algebra of trans-
lations %" = t(4) and the Lorentz algebra .¥ = so(3,1).
The Lie products satisfy {.¢,.¥]=.7, [.£,F =7,
[ %, %] = 0. Therefore %" is an Abelian ideal in & and
this makes the analysis simpler than for other nonsemisim-
ple Lie algebras (except, maybe, some low-dimensional
ones).

Hence with both mathematical and physical motiva-
tions we resume* the study of the indecomposable modules
of Z (infinite dimensional as well as finite dimensional).
This work is a natural extension of the study conducted by
Gruber and Lenczewski.** Thus the results contained there-
in will be basic for the analysis that is carried out in this
paper. Moreover, the modules considered previously*’ turn
out to be incorporated into the present study as special cases.
Therefore to a great extent we tried to use the same notation,
although in several places it has been changed to avoid con-
fusion.

In Sec. II we define the Poincaré algebra and introduce
the raising and lowering operators.

In Sec. III we define the universal enveloping algebra of
P, U(P)= YU U _F7, as aregular left Z module. The
induced modules % , (T") (the analogs of Verma® modules
of semisimple Lie algebras) are explicitly derived in the
Poincaré-Birkhoff-Witt (PBW) basis. Although the PBW
basis seems to be very natural, a basis more useful in physical
applications, especially in the case of the chain
s0(3) Cso(3,1) Ciso(3,1), is an angular momentum basis’
(AMB). Therefore we need to introduce an AMB to the
formalism.

In Sec. IV a certain AMB s defined. It turns out that it is
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not unique (in opposition to the Lorentz algebra case® or
some less general modules of the Poincaré algebra*). We
choose a certain energy-cyclic AMB which allows us to ob-
tain the modules % _ (I") in a closed form.

In Sec. V we give explicit formulas for % __ (I') in the
energy-cyclic AMB mentioned above. They are derived by
using the induction method. Modules %  (I") turn out to be
indecomposable for all [eC?. Each % , (T") forms, in fact, a
composition series. Moreover, when treated as a vector
space, it can be written as

U + (F) = Z @ﬁ

M, meN
m<M

such that each %7, is a Verma . module. The module
% . (I') can be viewed as a sum of interacting Verma .’ mo-
dules.

In Sec. VI we give some examples of finite-dimensional
indecomposable modules as quotient modules of %  (T")
[or its extension % (M) ] for certain 2I'eZ?. Bases for the
modules of dimensions 4, 5, 7, 8, 8’ (two different eight di-
mensional ones) are given as well as their so(3) Cso(3,1)
decomposition. Thus we identify all but one of the finite-
dimensional indecomposable modules of dimensions less
than 9 according to their recent classification for low dimen-

sions.’
The main result of this paper (contained in Sec. V) is of

significance in its own right taking into account that the
analogous result for the Lorentz algebra® reproduced the
Gel’fand—Naimark®® representations as a special case. At
the same time it provides an important step forward in our
quest for a unified approach to finite-dimensional indecom-
posable modules of Z.

In the sequel we use the abbreviations introduced above
as well as the following: inf(fin)-in(ir)-mod [infinite(finite) di-
mensional indecomposable (irreducible) module]. All alge-
bras are considered to be over C. For general references one
is referred to Humphreys'® and Dixmier."!

Il. PRELIMINARIES

The defining relations for the Poincaré algebra & are
usually given as the following set of Lie products:
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[P, P ]=0,
[M,uv’Pa]zi(g,uan_gvaPy.)i (1)
(M., M5 ]

= i(g,uanﬁ _gvaM,u.B +g,uBMav _gvﬂMa,u) H

where M,,,, P, represent infinitesimal generators of rota-
tions and translations, respectively, in the four-dimensional
Minkowski  space [u,v,a€{0,1,2,3}and g,, = diag( — 1,1,
1,1)]. In our formalism it appears to be necessary to intro-
duce another basis for &, consisting of root vectors, vectors
corresponding to positive roots (raising operators), and vec-
tors corresponding to negative roots (lowering operators).
The root vectors span the Cartan subalgebra of 7, i.e., the
nilpotent subalgebra that equals its normalizer in (it is equal
to the Cartan subalgebra of .£°). They can be chosen as
h,; =M, and f; = — iM,,. Raising operators (with a sub-
script + ) and lowering operators (with a subscript — ) can
be chosen as

hy=My+iMys, h_=My—iM;,

S = — My —iM,, Jo =My —iM,,,

k,=P,—iP, k_=P, +iP,, 2)

rp,=P;+Py, r_=P;—P,.

The advantage of using this basis stems from the fact that all
structure constants lie in Z as can be seen below. In the mod-
ules investigated by Lenczewski and Gruber® the following
basis was used: p, =if, ,p_=if_,p;=1if, and k;=P,,
ko= —iP,

Introducing »_ and r_ allows us to extend the modules
obtained therein as will be seen throughout the paper. For
notational convenience we are going to use & to represent
50(3) and F to represent the C-linear subspace spanned by
fis [, /5 (boosts). Clearly, # is not a subalgebra of &#
contrary to % and .Z.

Using the above notation one can derive the following
commutation relations in the new basis:

I T
sJ — =2h9

(7,71 T e
[h3’fi]=ifia

[,@,‘9‘—] [fi»hilziz.fy
Vohe]=t/e)
(fo,ro]l=+k_, (3)

o [f+rri]=i’k+,

R N e
fore =7,
([hn ke ]= £k,

(%, ] 5

It is understood that either all upper or all lower signs
(whether as subscripts or arithmetic symbols) are taken si-
multaneously.
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Ill. INDUCED MODULES % _(T') IN THE PBW BASIS

We come to the main object of interest: the universal
enveloping algebra (UEA) of the algebra Z, % (Z). 1t is
defined as the quotient algebra % (%) =9 (Z)/7,
where .7 () is the tensor algebra of & and .# is the ideal
generated by x®y —yex— [x,y], x,yeZ. It is well
known'%!! that there exists a basis for % () that consists
of standard monomials. This is the Poincaré-Birkhoff-Witt
(PBW) basis.

The left tensor multiplication by & makes out of
% (&) aregular left module. Various quotients of % (#)
can be considered. For example, for given I'eC? one can de-
fine a module % ,(T') as a quotient module % (Z#)/ 7,
where the ideal # is generated by lowering operators and
hy — T\, f; — I[';. Similarly, % _(T") is a quotient module
%Y (P )/ % where the ideal ¥ is generated by raising opera-
tors and 45 — 'y, f; — I',. We will restrict our attention to
modules % _ (I') later on giving a connection between
% (') and % _(T") through an automorphism of 7. The
following relations are obtained on % _ (I'):

hX=({T,4+n+s+p)X, h X=X(n+1),

L X=X+ 1), kL X=Xp+1),

h X=n(-2',—2p~2s—n+1)X(n-1)
— 2w+ T)X(s—1)

—s(s—DXGs+Ln-2)+pXp—1Lv+1),
fX=s(—-2'—-2p—s+1-2mX(s—-1)

+2n(—v—-TX(n—-1) 4)
—nn—DX(Gs+1L,n—-2)+pX(p—1Lv+ 1),

X=,+v)X+nX(s+1L,n—-1)+sX(n+1,5—1),

k. X=—sX(s—Lv+1)—nX(n—1Lv+1)
+s(s—DX(s—2,p+1)
—nn—1DX(n—2,p+1),

r X=sX(s—Lp+1)+nX(n—-1,p+1),

r X=Xw+1)—sX(s—Lp+1D)+nX(n—-1p+1),

where X=X(nspy)=h"_f°, k? r’, ,nspreN, and
only the parameters that are altered by the action of the
operator on the left-hand side of each equation are indicated.
The basis elements represent the natural basis induced by the
PBW basis of the UEA, hence we refer to it also as a PBW
basis of % , (I").

The above equations show that % _ (I") is an inf-in-mod
for all I'eC?. The value of v does not decrease. Hence, on
quotients % , (I")/,, where the ideal &, is generated by
r', , one obtains induced relations similar to those exhibited
by Eq. (4). In particular, if we consider the ideal &', we
obtain the modules ), (I') (Ref. 4) recently examined.
Presently, however, the structure under consideration is
richer and will give new results. The next step consists in
performing a change of basis from the PBW basis into an
AMB.
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V. AN ENERGY-CYCLIC ANGULAR MOMENTUM BASIS

In this section we are going to concentrate on finding an
AMB for % ,(T'). We will use the fact that [4_, k,] =0to
generate an AMB that is energy cyclic.

To find an AMB we define an %?-maximal (% -mini-
mal) vector to be an eigenvector Y of A, that satisfies
h,Y=0 (h_Y=0). They generate cyclic % modules,
whose bases will span & modules % , (T") [% _(I")].

Let & = {Y;, jeJ} be the set of all Z-minimal vectors,
where J is a certain index set (or a multi-index set). Then,
AMBC{r" #}={h" Y, jeJ}.In the case of the Lor-
entz algebra® or the modules 02, (I') of the Poincaré alge-
bra,* AMB={r" %}. However, in % _(I') we have
AMB=#{h" #%}. In fact, card(AMB) =R, whereas
card {h", %} = c. This leads to the nonuniqueness of the
AMB. In this paper we shall choose an AMB which is energy
cyclic.

One arrives at the following form of minimal vectors:

{Yunl= [ > XN —s —p,s,p,M—-p)] ,

s+ p<N
pP<M

where N>0, M>0, and h,Yy,, = (I'; + N) Yyu,. The con-

stants cfy" satisfy the following recurrence relation:

(N—s—p)(—=2F,—p—s—N+ 1)c}¥
—2M+T,—p)(s+ l)cﬁvflvp
—G+2)E+ DM, — @+ DY =0, (5)

Because of the abundance of solutions of the recurrence
relation we need to choose certain representatives of the sets
of Z-minimal vectors in the form given. We are going to do
it in a fairly natural manner. We will try to reduce the prob-
lem to the Lorentz algebra case (where the solutions are
unique and generate the bases of .#” modules) in a sufficient
number of cases to generate the whole set of Z7-minimal
vectors that will be needed by applying the energy operator.

Let us set M = O first. This is the prototypical Lorentz
algebra case. We obtain the following recurrence relation:

(N—=s5)( =2 —s— N+ Del® =2, (s + De?

—(s+2)(s+ 1)), =0. (6)
|

Then Yy, can be given as

Yo = Y cb’X(N —5,5,0,0) (7)
s<N

and the constants ¢3° can be uniquely determined. Their
explicit form is fairly complicated and will not be needed in
the sequel since our derivation of the modules % , (I') in the
new basis proceeds by induction.

Let us set N = 0 now. Then the only possible Z7-mini-
mal vector is X(0,0,0,M) (up to a constant factor, of
course). Thus we let

You = X(0,0,0,M) . (8)
Now, if N %0 and M =0 then the solutions for Z7-minimal
vectors span at least a two-dimensional vector space. We

choose the representatives of the sets { ¥y, } in the following
way:

Yo = D ¢ X(N —5,50,M) , (9
SN
with c™ satisfying the recurrence relation:
(N—s)( =20 —s— N+ 1)ckM
—2(M +T,)(s+ e,
—(s+2)(s+ D™, =0. (10)

Thus Yy, have exactly the same form as ¥, except that T,
is replaced by I';, + M. Hence we will obtain in this manner
Z7-minimal vectors for .° modules.

Other %7 -minimal vectors are defined inductively using
the energy operator as the generator. Thus we obtain the
following set of Z7-minimal vectors:

Yo = (2ik0)mY?V,M—m’
where m<min (N,M). Now,
AMB={n" Y7, =Y , nmNMeN,
m<min(N,M)} .

(11)

o _
YNM - YNM H

We call the above four parameter basis an energy-cyclic
AMB since it is generated by the energy operator k,. This
basis will allow us to obtain the modules % _, (I') in a closed
form.

V. MODULES % . (I') IN AN ENERGY CYCLIC ANGULAR MOMENTUM BASIS
In this section we shall present the main result of this article. It will consist of the formulas for the modules % _ (I') in the
basis defined in Sec. IV. They are obtained by the induction method and their derivation involves fairly extensive calculations.

One obtains
R YT =Y (12)
h_ Y7 =nF7 Yo bm, (13)
WY =GrY Ny (14)
nm N_ m + 1 nm m nm — n .m
fiY = ('W)YN+1,M + (N——I-I)YN+ 1,114 + Bartm Y
+ B;VMm Y;'V;fl,m -1 + aNMm Y’I:/tzl’,rlr\l'! + aI‘VMm YnNtzl‘,’;'Ii ! H (15)
——1)(N'—m+1) —_ n(n_l)m — —1 n n—1m
Yy o— _(n(n )Yn 2,m <_ )Yn 2,m +nF%pB mY »
S YN N+l N+ 1,M —N+ 1 N+ LM NP NM NM
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+ AFNB g ¥ g™ T = FR(Fy + Dy YN (g — Fy (Fly + D, Y75

(16)

AY i = (%f;i)m;‘;m + (;—i)Yzz‘l':;f* 4 G Bsen ¥
+ G B tsim Y Nar — F g Y"Ntll‘,';l — FRajmm Y;vtlx',’;t‘l , (17)
ko Yim = (—i/2)YumbY (18)
sV 3 = (= 5 J PR+ (S ) PR W + 3638 3hen YRR
2IN+ 1) 2(IN+ 1)
FAGNB i Y s+ 1 — S n @ m YN N0 — W @i YA 000 1 (19)
YR = ( N 2(N1+ 1) )YmT'Al”‘ * (2(N1+ D >Y7V'"+ Lt 38 o YR
+ %B}T\’Mm vijuli-ml + %aITVTMm Yf'vizf,’fiﬁﬂ + %aJrVMm Y?vtzf,r;ur 13 (20)
k¥ = (SO it + (= e YT )+ PR Y Va1
+ 3B Nt Y v 1 — AF W (F oy 4 DaNam Y2 8 o0 — 3N (F R+ D YN a1 (21)

where the coeflicients Gy, F %, Bastms 3 Mt s B watons BB Nrtms CEnntms Eintm s Enagm s Enasm are given below as functions of I':

_NQL +N+m=2)((C, +N-1)>— (I + M —m)?)

Gatm = (T, +N—1)2Q2T, + 2N —3) (2T, + 2N — 1) ’
t _N((F,-—f—N—Z)—(F2+M—m))((F1+N—1)——(F2+M—m))
M (T,+N— 1?2, +2N-3)(2, + 2N — 1) ’
S mN({(Dy+n—-2)— (I, +M—m)}(I',+n—-1) — (', + M —m)) ,
”' (C,+N—1D?Q2I, +2N-3)(2I', + 2N - 1)
all, = N({(F,+N—1)>— (T, + M —m)? ’
" (D, +N—-D?QT,+2N-3)(2I +2N - 1)
B, = L2t M—m) (T tm—1)
(ry+M{T,+N¥N-1)
ﬂITVMm — (F1+N—1)—(F2+M—m) ,
(i +M(T,+N-1)
gL, = m((D A N—1) = D+ M—m)
(y+MNM( +N¥N-1)
oo IN+M—m
M+ (T, +N—1)
and G =T+ N+n Fy = —2I') —=2N—n+ 1. The I;hich the matrix elements in Eqs. (12)-(21) are factored

notation that we used in the above formulas is not accidental.
Thus the arrows correspond to the action of the operators
that increases or decreases values of m and/or M. Those are
the indices that are implemented by the Poincaré algebra.
Hence their interpretation is given below:

L -m-m—1,
T -M-M+1,
1t -m-m+1, MM+ 1.

One has to add one more condition on Egs. (12)—(21).
Namely, in the right-hand sides of all equations we define

Yo=Y, . (22)
Let us recall that the basis Y4, has been defined for
n,m,N,MeN and m<min (N,M). The artificial condition just
given can be treated as a “boundary condition” that enables
us to write all the equations in a closed form. The way in
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follows from the embedding chain so(3) Cso(3,1) Ciso(3,1).

Let us discuss now the most important features of the
modules %  (I") exhibited by Eqgs. (12)-(21).

(A) Define 2, = {Y"n,, n,N>0, N>m},where M>m.
Then each % 7 isa Verma .¥ module that is either an inf-in-
mod or an inf-ir-mod depending on the value of I'. Let us
treat % as a prototypical .%° module. Here %$ is the mod-
ule that would be obtained if one considered the enveloping
algebra of .%°. It is essentially the same module that was
considered® in the case of the Lorentz algebra. Then, %7}
becomes % defined in terms of starred objects:

I'*=T',+m, I¥=T',+M—-—m, N*=N-—m,
Y % if N=0,
Y — 1 Y if N 0.

N—m+1)--(N—DN
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(B) For each I'eC?, % 4 (I') is indecomposable since
the value of M never decreases. It is quite clear from Fig. 1
how submodules, quotient modules, and subquotient mod-
ules can be defined.

(C) Thesum % + % + %3 -+ is a quotient module
and is essentially the same module as Q_ (I') recently* ex-
amined. Thus the study conducted previously** is a special
(and very illuminating) case of the results contained in this
paper.

(D) Equations (12)—-(21) can be extended to all neZ.
The extended vector spaces and modules will be denoted
with a tilde, i.e., 52}+(I‘), 52;(}, etc.

(E) If 2I'eZ? one may obtain fin-in-mods (or fin-ir-
mods when trivial on %) of & by passing to the quotients.
The essential features of the procedure are the same as pre-
viously* studied. The fin-in-mods obtained on quotients of
the composition series discussed in (C) coincide with fin-in-
mods therein* contained. New fin-in-mods can be obtained
as other quotient modules (see Sec. VI).

(F) The module % . (I") goes over into the module
% _{ — T') under the Lie algebra automorphism a:

a(hy) = —hy, alpy) = —ps, alh,)=h_,
ath_)="h,, alp,)=p_,

alp_)=p,, alk)y=k_, atk_)=k,,
a(r.)= —ry, a(ry)=—r_.

(G) It can be seen that the indecomposability of
%  (T') essentially follows from the fact that & is a semidi-
rect product of % and .#". Hence the situation is quite dif-
ferent than in the case of . itself where passing to the quo-
tients gives® fin-ir-mods. This observation might be of a more
general nature and apply to analogous modules of other non-

0
Uy
K| k
) 0
WU
k| « k| «
v g
2 1 0
Uy > Uy Uz
k| « k| « k| «
\/3 \/2 il 0
—_ -
Uz U3 Us— Us
k| « k| K k| « k| K
v 'V v

FIG. 1. The module % _ (T"). The action between subquotient modules
%7, is carried by % or . as shown above.
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semisimple Lie algebras that are semidirect products of an
Abelian ideal and a Levi subalgebra.

VI. FINITE-DIMENSIONAL INDECOMPOSABLE
MODULES

In this section we are going to discuss fin-in-mods of Z.
They are obtained as quotient modules of % , (I')
[07/ 4 (T")]. One obtains infinitely many such modules. We
are going to content ourselves with giving only a few exam-
ples. A more systematic treatment goes beyond the scope of
this paper.

In general, fin-in-mods are obtained when 2I"Z>. Then
some of the coefficients in Eqgs. (12)-(21) vanish giving rise
to submodules and hence to quotient modules (finite dimen-
sional). Thus one has to examine the zeros of «a,
a,a,a',B, B, BB ,and Fy, G% aswellas thesin-
gularities of the former ones for specific values of I'. Clearly,
singularities cannot occur on the quotient modules if one
wants to obtain meaningful results. The nature of separation
of submodules from their complements (that is, what is
worth mentioning, hidden in the PBW basis) is for each
%7 (%7) the same and follows the pattern closely exam-
ined’ in the case of the Lorentz algebra (or, simply, %3).
The procedure is somewhat geometrical although it is con-
ceivable to look at Egs. (12)—(21) from the algebraic point
of view. Thus if we put the basis of % ; on a two-dimensional
plane with V on the horizontal axis and # on the vertical axis
we obtain a subset of a Z? lattice. Two kinds of separation
lines can be introduced: broken defined by the equation
Ff = —2T', — 2N —n+ 1 and horizontal given by N *
=L+M—m-TI'+ I, N =-T,-M+m-T,+1
One can see that the action of all operators of & is within
each %7, the same and if it amounts to an interaction with
an adjacent Z 5t Y, U5 . 1, or %%~ ! thenitis only modi-
fied by a translation [in other words, under projection onto
the canonical image of % , (.£") in each %7, it is identical
for all Z7;].

Let us now present several examples of fin-in-mods ob-
tained as quotient modules of % , (I') [% . (I")]. We are
going to characterize them by giving the value of I, number
of interacting .¥” modules (those are .% fin-ir-mods), their
R C.L decomposition as well as their bases in the explicit

form.
(A) A four-dimensional ¢ -fin-in-mod is induced on a

quotientof U % whenT = ( — 1, —1). The number of
interacting .% -fin-in-mods is 2 and the % C . decomposi-
tion is 2 4+ 2 (two fin-ir-mods, both two-dimensional). The
basis is given by { Y3 ,Y 0 YU{Y 3, Y9} (we separate the
bases of interacting modules). The matrix representation is
of the block form:

( 1 a. )
12 2 ’
where

—10 0 O
”‘(h3)=( 0 ) ”‘”'*):(1 o)’

1
2
00
”'(h—)z( ”‘(f+):(1 o)’

0 1
o 0/
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00 0 —1

§12(k+)=<—1 o)’ glz(k*)z(o 0)’
10 0 0
§’2(’+)=(0 0)’ 5‘2(“):(0 —1)'

(B) A five-dimensional Z -fin-in-mod is induced on a
quotient of Z3U %} when I' = ( — 1,0). The number of
interacting .¢ -fin-ir-mods is two and the % C .¥° decompo-
sition is 44+ 1=(3+ 1)+ 1. The basis is given by
{r%,v0,v%, yRIU{YI }. The matrix representation
can be obtained in a straightforward manner.

(C) A seven-dimensional & -fin-in-mod is induced on a
quotient of 39U %} when T = (1,2). The number of inter-
acting .Z -fin-ir-mods is two and the # C . decomposition
is 44 3= (1+3)+3. The basis is given by {¥ ~

Y-©0,y-20,y- 0 ,u{y-1,¥y"2 ¥y} }L
(D) An eight-dimensional Z -fin-in-mod is induced on
a quotient of 9 U% | when T’ = ( — 3, — ). The number

of interacting .# -fin-ir-mods is 2 and the R C ¥ decompo-
sition is 6 +2=(04+2)+ 2 The basis is given by
{0, Yoo, Y30, Yoo, Y55, YigJU{Y DL Y

(E) An eight dimensional @ -fin-in- mod isinducedona
quotient of Z3U%{U% | when I' = ( — 1,0). The num-
ber of interacting .Z -fin-ir-mods is 3 and the #Z C .¥ decom-
positionis4 4+ 3 + 1= (3 + 1) + 3 4 1. The basis is given
by {Y30,Y 00, Y30, Y0 YU{Y 3, Y o, Y 51 JU{Y Y

The matrix representation of the above & -fin-in-mods
is of the following block form:

@ o)
12 9

in the case of two-interacting . -fin-ir-mods (A4,8,C,D), or
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o 0 O
£, o0, O
i3 O 03

in the case of three interacting .¥ -fin-ir-mods (E). Other
Z -fin-in-mods can be obtained in the manner outlined
above. Itisinteresting to note that from among all the & -fin-
in-mods up to dimension 8, that were classified by Paneitz,’
all but one have been identified.

VII. CONCLUDING REMARKS

We derived the formulas for the induced modules
% , (') of the Poincaré algebra Z in an energy-cyclic
AMB. It turns out that % , (T") is indecomposable for each
I'eC?. The subquotient modules of % | (") are Verma .&
modules. A large family of new & -fin-in-mods can be ob-
tained on quotients of % , (I') when 2I'€Z?. Several exam-
ples were given.

It would be of interest to determine whether other ener-
gy-cyclic AMB’s give more suitable bases for physical appli-
cations. The corresponding formulas could be easily ob-
tained through a linear transformation. Also, a more
systematic approach to & -fin-in-mods can be attempted.

The extensions of % , (I") to the scale-invariant algebra
(& extended by dilations) can be obtained without much
effort. However, it would be interesting to study the exten-
sion formulas for the conformal algebra.

All of the above matters are currently under investiga-
tion.
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A systematic procedure is presented to solve analytically differential equations for Grassmann
variables with the most general nonlinearity. The method consists in the reduction of the
original equation to its simplest form (normal form). The classes of solvable normal forms are
determined only by the structure of the linear part of the original equation and are
parametrized in terms of the number of critical eigenvalues.

L. INTRODUCTION

Differential equations involving anticommuting
(Grassmann) variables (GDE) are often encountered in
theoretical physics'™ due to the fact that the Grassmann
variables 6,, [9,-,0j ]+ =0 are the classical counterparts
(#i-0) of quantum fermionic operators a;, af, [a;,a;] .
=0, [a,,a]], = #5,. For instance, they have been consid-
ered by Casalbuoni® in the study of the classical mechanics
for a Bose-Fermi system; by Berezin and Marinov' in the
context of the supersymmetric treatment of a classical rela-
tivistic free particle which, after quantization, becomes a free
Dirac particle; and by Olshanetsky,’ who considered the su-
persymmetric version of integrable models by the inverse
scattering method. Let us note that GDE also naturally arise
when we study a quantum Fermi system via the path integral
in the Bargmann-Fock coherent state representation. In this
formulation the integral kernel of the evolution operator is
given by an integral over a Grassmann algebra whose explic-
it calculation leads to the evaluation of the action on the
classical trajectory satisfying the Grassmann Hamiltonian
equations (see Appendix C).

As another example of GDE we mention the widely
studied massive Thirring model® defined by

i—;—¢1=m¢2 +g€752¢2¢1> (1.1)
x

i 8= mb,+ ghibb:. (12)
where ¢,, ¢, are Grassmann fields. This model possesses an
infinite number of conserved quantities’ and presents soli-
ton-type behavior. Moreover, Morris® has been able to deter-
mine a Bicklund transformation for the anticommuting
massive Thirring model by generalizing the prolongation
structure method of Wahlquist and Estabrook® to Grass-
mann algebra valued differential forms.

It is the purpose of this paper to study the most general
GDE in the sense that they are not necessarily derived from
the variation of an action (as in Refs. 1 and 4) and they
contain the most general nonlinearity compatible with the
Grassmann algebra.

The plan of this paper is as follows: In Sec. II the differ-
ential equations to be studied are presented, together with
some notation to be used in the remaining sections. For the

®Unité Associée au C.N.R.S.
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sake of clarity I will consider here the case of a discrete num-
ber of degrees of freedom (eventually a countable infinity of
degrees of freedom), with the generalization to the contin-
uous case (Grassmann fields) being straightforward. Sec-
tion III is devoted to developing the normal form method for
the equations of Sec. 11, that is, a method that reduces these
equations to their simplest form. Finally, in Sec. IV we com-
ment on other classes of normal forms that can be easily
integrated and on the relation of Thirring-type equations
with our normal form method.

1. NONLINEAR GRASSMANN DIFFERENTIAL
EQUATIONS

To begin with let & be an infinite-dimensional complex
Grassmann algebra. Let us consider in & a family % of n
real odd elements depending on a real parameter ¢:

F ={6,(1):6,(1) =0¥(1),
[6:(0),6,()]+ =0,
Vee(ty, + ), ij=1,.,n},

where the asterisk denotes the involution operation'® in &
and [, ], is the anticommutator.
We assume that the elements of & vary with raccording

to
a
—0=L0+N(0), (2.1)
ot
0(t=1,) =0,, (2.2)

where 0 is an n-dimensional vector, with 8 = §,¢’ (sum over
repeated indices), €', i = 1,...,n the canonical basis in a vec-
torial space that we call ;. Here, L is a real linear operator
acting on #°; and N (@) stands for an arbitrary nonlinearity
which preserves the odd character of (2.1), and therefore
can be written as

(1/72)(m — 1)

¢

2+ 1 ..
i €iiiy-- T 9'] 6"2 9’2j+ 1 ? (2.3)

ji=1

where @ ¥ TP i =1,..,n;j = 1,...,4(m — 1) belong to 7,
m =n (resp.n — 1) ifnisodd (resp. even), and €., ,
is totally antisymmetric in the indices i, k= 1,..,2/ + 1.
Note here that if n = 2, there is no nonlinear term since the
only term available, 8,8,, is an even element of & which is
notin %.

Let us remark here that the Thirring model (1.1) and
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(1.2) can be cast into the form (2.1) by writing ¢, = ¢,
+ ip,, &, = ¢, + iy, Where @, @,, ¥, ¥, are new indepen-
dent real Grassmann fields, and by assuming that these fields
only depend on a single variable £ =Ax — A ~ ', AeR
(Grassmann solitons).

lll. THE NORMAL FORM METHOD

Let us assume that the spectrum S of L is the union of
two disjoint parts S =S_US,, where yeS_ (resp. S,) if
Re ¥ <0 (resp. Re ¥ = 0). We suppose that the linear opera-
tor L has n_ eigenvalues belonging to .S, which we call criti-
cal [since they will determine the solvable classes of (2.1) by
this method], while the remaining eigenvalues v,
a=1,..M=n—n. (M eventually infinite) are all differ-
ent and have negative real parts. Since L is a real linear oper-
ator the critical eigenvalues can be zero on purely imaginary
pairs (iwy, — iw, ), k=1,...,s. Thenn, = 2s + /, where / is
the algebraic multiplicity of the zero eigenvalue.

In the following we will consider the class of nonlinear
equations parametrized by s = 1, / = 1 and it will be proved
that it can be exactly solved. (Section IV and Appendices B
and C deal with other classes that can also be treated by the
method developed in this section.)

The method is as follows. According to our assumptions
F7, is the direct sum of two subspaces invariant by L,
K| =F @ |, where 7 is spanned by the vectors ¢,
Ly, = v,¥, and 577 is the critical space spanned by {¢,,

é, = &, &; = ¢} such that
0 O 0
L, =J,6,, J=|0 iw O (3.1)
0 0 —iw

Let us introduce into & a new family of odd variables
{4,,4,=4,4,=A4* B,,a = 1,..,M} defined through the
nonlinear change of variables

0([) = Z A, (t)¢1 + z B (t)lpa

i=1
(m—1)/2

+ 2

Jj=1

8'%+(C, (1)), (3.2)

wherem = nforoddn,m =n — 1 forevenn,and @ ¥+ 1
homogeneous of degree 2/ + 1 in the variables {Cp}, where
C,=4,,p=12,3,C,, , =8B, ax>1, and therefore is of
the form

(2 +11 .
(G, )8,

iy

e[2j+1]=z (C[I)n(ciz)fz (33)
with
P

E ri=2%+1,

i=1

re{0,1}, i #i,, if j#k, (3.4)

and 0,!127.7:p1]"""”eﬁ/ | totally antisymmetric in /,--*/, and
time independent.

We look for equations for {4,,B_} of the form
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04,

= = Jody SIS e S
d B, B, +g¥ 4+ g% 4 {m)
a_ =Y + 8z +8&a C+ 8a
(no sum over ), (3.5)
where 1", gI/! are homogeneous of degree 7 in {C, }.

From (3.2), we have

ac !
98 _9 9 4. (3.6)
ot at dC,

where the superscript / means that in differentiating with
respect to C, we must displace the variable C, to the left
before dropping it.

By replacing (3.2) in (2.1) and using (3.5) and (3.6),
we obtain, after an identification of each order in {C,}, a
hierarchy of equations for "), r = 3,5,...,m. For r = 1, we
obtain

JjA;0: + V5Bl = L(4;0; + Boly) ,
which is an identity due to (3.1) and L,z = y50;,.
At order r>3 (odd r), we obtain the following homo-
logical equation'":

LN = (o + % — L)

(3.7)

= It _f[r]¢_ [’]lb K[rl
r=3,5,.,m, (3.8)
where
a! a!
o =) A —, #=vy,B, 3.9
Yidi 5o YaZe 3B G2
and
r—2 a [s] al
I = NI (9) — (—C ) —glr—s+1 3.10
©) :é:s ot ’ HC ( )

If » = 3 the last term in (3.10) is absent.

Let us look now at the structure of the space in which
(3.8) is written: It is the tensor product & = # | ® 7,
® #°,, where #°, (resp. 77°;) is generated by monomials
constructed from the variables 4; (resp. B, ). Therefore #°
is an orthogonal sum of .¥ -invariant subspaces.

N=

K= o ® %g' Mo N e (X ed?),

= 3,5,...m N=0
(3.11)
where 1V is generated by 4 4 74 7, Z3_, ri = N<3, r;
€{0,1},if N> 3 #°LV Vis empty, and 27 ~V1is generated by
Bl---BM M  r,=r—N,re{0,1}.

!

We now introduce a scalar product in 5%°,, 7#7; defined
as

Gt =[ew( = § crc)ncyrre)

XdC¥ dC,--dC % dC,. (3.12)

where p' =3, p” =1 for 77, and p' =M, p" = 4 for 77,
[note that (3.12) is a multiple Grassmann integral defined
in the Berezin'? sense ]. We define the scalar product in 5 as

(})%’=<’>W1<1>§£‘2<1>%3: (3~13)

where ( , ) s, is such that the eigenbasis is orthonormal.
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It is easy to see now that .£ is a linear noninvertible
operator acting on & and therefore (3.8) will have no solu-
tions for 8!" unless K'"! is orthogonal to the null space of the
adjoint of . in the scalar product (3.13). This solvability
condition will determine the unknown functions £}, gl"! in
(3.5) in such a way that Eq. (3.8) can be solved for 81", We
note that £, gI" (resp. 87 are determined modulo terms
in Ran .7 (resp. Ker .#). We choose to make a minimal
prescription such that all these gauge terms are taken to be
zero. [Obviously the original solution 0(z,¢,) of (2.1) will
not depend on this choice. ]

At this point it is worthwhile remarking that the opera-
torsA,,3'/94; (resp. B,,3'/dB,,) are adjoint to each other
in the scalar product (3.12) and that they satisfy (a] = 4,, a;
=3'/04,,b} =B,, b, =3'/dB,)

[6.65]+=0us, (3.14)
i.e., they are Fermionic creation and annihilation operators
in the Fock space 77, (resp. #7;) [Eqgs. (3.14) show that .
is the Fermionic version of the homological operator intro-

duced by Arnol’d"'] and, for instance, we can write the gen-
erators of LV, 7~ N1 as

[a:.a]]. =6,

[rrars) = (aJlr)rl(a;)rz(aDﬂO)’ 0) =1,
3
2 ri =N, r,-E{O,l},
i=1 (3.15)
|Fpeestag ) = (O] (B 1) ™|0),
M
> ri=r—N,

i=1

r,'E{O,l},

which are obviously orthonormal.
Therefore the adjoint of .#” in the scalar product (3.12)
reads as
_ a i - a i
fT = JIi'Ai —+ aBa
i 54, " V"= 3B,
where L ' is the conjugate transpose of L: LT =T,
It is not difficult to check that the null space of .#’ ¥ in %
is generated by (provided the set {y, } satisfies the nonreso-

— LT, (3.16)

nant condition ¥, #Z_ ., 0., YVAC{ =2, —1,1,..,.M},
Oy ={0_r=iw,0_;,= —ioy,})
{4,4,450,,B, 4,450, a =1,..M} . (3.17)

It is worth noting that although vectors of the form X,
= B,A,A4,4;, dosatisfy "X, = 0, they are not included
in (3.17) since they do not belong to 5 (they are even ele-
ments in ¥ ).

Therefore we have the following solvability conditions:

(VA AAS) 3,00, = (1A o)
(g([xr]’BaAzA3>%”ze<??”3 = <I[r]rBaA2A31ba )%’ a=1...M
(3.18)

Consequently we conclude that we can take £} = fi1 = 0,
S =g =0, for r> 3, and

S = (NCI(0),4,4,4:50,) 544,45 = kd,A45,
gl = (NP1(8),B, 4,450, ) 5 BoArds = ko B Ards .
(3.19)

1245 J. Math. Phys., Vol. 28, No. 6, June 1987

We remark that k, k, in (3.19) are totally determined
since N'*(0) only depends on 8'"! = 4,d, + B, 1,,.

Having completely determined the functions £}, g\l in
such a way that (3.8) can be solved for 8!”, and noting that
I'"! only depends on 0" for s < 7, we see that (3.8) can be
solved by recursion in r. [In Appendix A it is shown how to
solve Eq. (3.8).]

Thus we have finally derived the normal form equations
for {4,,B,,}. By using (3.18) and (3.19) in (3.5), we obtain

*
o4, =kA,AA *, o4 = iwA, o4 = — iwA ¥,
ot ot ot

(3.20)
B,
=B, (y, +k,A4*),
At

[Note that k, k, are complex numbers since 4T =4,,
B*=B_,(AA*)* = — AA * (since 4,4 * anticommute). ]

Once Eq. (3.8) has been solved for 8!"), the original
vector §(¢) is obtained through (3.2); if one evaluates this
expression at ! = ¢, one obtains a relation between 0, and
{4,(1,),B,, (t,)}, which can be solved for {4, (£,),B, (%)},
determining in this way the initial conditions for (3.20) as
functions of the original initial conditions. In short, {4; (#,),
B, (1,)} can be completely determined from the knowledge
of 8.

Equations (3.20) are easily solved and we obtain

A(t) zeim(z-to)A(to)’ A *(t) =e—iw(l—to)A *(to) ,
A () = (1 4 k(t— 1) A1) A *(£))4, (1) , (3.21)

B () =" (1 + k, (t — 1) A(t5)A4 *(2,))B, (%) .

By replacing (3.21) back into (3.2) we obtain the solution of
(2.1) and (2.2). Let us remark that one can formally obtain
from (3.20) the case when S, is empty by putting 4 =4 *
= A, = 0; then the original problem is reduced to the linear
equations,

a=1,.M.

oB,

a=1,..M.
at

(3.22)

= YaBa’

We finally note that the solvability conditions have a
simple interpretation in terms of particle physics: Ker .£"1is
generated by vectors X =X,b, + X,$, + X306, and
Y=B,Y,V, (no sum over «) such that XeKer
(&t — Z£") and YeKer &7, which means that they satisfy
(A= — )

oA X, =0, J&X,=1X, JAX;= —1X,

1Y, =0, a=1,..M (3.23)
By writing { «/ as

yal(43)ya;, (3.24)

where A is the diagonal Gell-Mann matrix diag(0,1, — 1),
we easily see that 1 .« is one of the diagonal generators of the
Cartan subalgebra of color SU(3) [} &/ = I, is also one of
the generators of the isospin subgroup of SU(3) ]. Therefore
X can be regarded as a quark triplet with components
(s,u,d). It follows that the solvability conditions project Eq.
(3.8) on the } -isospin plane (u,d).
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IV. GENERAL COMMENTS

Let us finally mention that besides the class of equations
studied here [s =1, /= 1] and the trivial case when S, is
empty, there are other classes that can also be treated and
solved by the method presented here in a straightforward
way. These are the following:

[s=0,1=1], J=(0); (4.1)
00 0 1
[s=0, I=2], JI1=[0 o} or Jz=[0 O]; (4.2)
[s=1, I=0], L=[W 9}, (4.3)
0 —iw
01 0
[s=0,7=3], J=30 0 1
0 0 0
0 0
or J= Ji 0} or J= & 0t; (4.4)
0 0 O 0 0 O
Js J Js J
=1, I=2], ={3 ‘] =[3 ‘]. 4.5
[s L, J I J I (4.5)

For other classes with more complicated matrices J, al-
though the method does not give directly the solution to
(2.1), it allows us to write (2.1) in its normal form, which
means in its simplest form (with the least number of nonlin-
ear terms) the solution can be found either by inspection or
by developing new methods such as Bicklund transforma-
tions or inverse scattering methods applied to GDE.

It is also interesting to remark that if we consider the
case when

{7 H
J‘[Jl I,

and we apply the method presented in Sec. 111, we obtain a
normal form equation for the critical variables, which is ex-
actly the anticommuting massive Thirring model when writ-
ten in terms of the variable £ = Ax — A ~'¢, i.e., the normal
form equations read as

i%m = by + g 816:6,
i‘g;‘ﬁz = P, + gd¥d d, ,

9B,
at = Ba(ya + 6(1 (¢§k¢2 +

(4.6)

$ré1)

+Ba¢’1k¢l¢’2k¢2)9 a = 1’--~’M-

Therefore we conclude that the Thirring model is a universal
equation for all the nonlinear Grassmann differential equa-
tions parametrized by [s =2, /= 0], in the sense that for
times t>Sup, Rely,|™!, all the dynamics is governed by
this model (see Appendix B).

Let us note that rigorously speaking the different classes
of GDE should also be parametrized by a third integer c'!
(the codimension in the language of bifurcation theory)
which counts the minimum number of parameters needed to
unfold the critical situation. For instance, the matrix J stud-
ied here has ¢ = 2. With the last remark in mind, it is clear
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that in a zero-parameter class of Eq. (2.1) the generic situa-
tion to be found is the case when S, is empty.

Finally, let us comment on possible generalizations of
this work. One possibility is to extend the present method to
a supersymmetric classical system described by the action

fdtde d6,( — i®,D,D,®, — U(D)),  (47)

where D, D, are supersymmetric covariant derivatives:

J! a a’ a
D=——+i6,— D,=—+1i0,—, (4.8)
! 86, ar T 9, at
where U(®) is the superpotential and ®;,j = 1,2,..., is a set
of supervariables,
®; =@, (1) + 6y () + 1 60 (1),
4.9)

- 0 1
6="0% 7"’z(—l 0)’
where @;, @ / are commuting variables and ¢, is a two-com-
ponent Majorana spinor.

The classical mechanics of our system is given by an
action obtained from (4.7) after integration over 8,, 8,:

i . .

y:qu_m%+¢%+w%%n, (4.10)

4]
where an overdot stands for the time derivative.

Variation of S’ leads to nonlinear differential equations
coupling commuting and anticommuting variables. In par-
ticular, by using the method of Sec. I1I, we arrive at an equa-
tion like (3.8), but where the operator .#” is replaced by a
super homological operator .¥” which contains both bosonic
and fermionic creatlon and annihilation operators. The

structure of Ker .#" is much more complicated than in the
case considered here and therefore the classification of solv-
able classes or classes reducible to simple normal forms be-
comes much more complex (details of the normal form
method for a supersymmetric classical mechanics will be
given elsewhere).
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APPENDIX A: SOLUTION OF THE HOMOLOGICAL
EQUATION

Here we show how to solve Eq. (3.8) for the Grassmann
vector 011 r = 3,5,...,m. For simplicity we consider the case
M = 1 which will suffice for understanding how the solution
mechanism works for M > 1.

We start by decomposing N(8) in Eq. (2.1) as

N(8) =N, (8)d; + N,(0)d, + N3(0)d; + N, (0,
(A1)

where
N (8) = 0, 0, 6 i=1,..,4, (A2)

I iyl Yy

and k;; ; , is totally antisymmetric in i}, iy, i5.
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For M = 1, Eq. (3.8) reduces to the equation for 6"’
1 H 1
(IR P
o4, 94, JB

= NP (0) — k4 1A2A3¢1 - leA2A311’ ’
where use has been made of (3.10) and (3.19).

We note that N*!(0) only depends on 0!, which is
known by construction [Eq. (3.2)] and is given by (A1)
when we replace 9, by p;4;, p; = (e;,;), 1= 1,3, and 8, by
piB, ps = (e, b). We obtain

NEI(0) = N Po, + NVIo, + NJIo, + NE, (Ad)
where
NP =q,4,4,4,+ b,BA\A, + c,BA A, + d . BA,A; (AS5)

and the constants a,...,d; are functions of p;, k;; ... [a; =k,
d, = k, by the solvability conditions (3.18)].
Now writing 61 as

(A3)

00 =0 Pld, + 65, + 03P, + 0P (A6)
and using (A3), we arrive at the following:
267 =B(b,4,4, + c,AA; + dA,43) (A7)
(Z —iw)dP=NPI, (A8)
(9 — )0 =a,4,4,4; + bBA A, +c,BAA;, (A9)

where

a4, o4,

The solutions of Egs. (A7)-(A9) are obtained by ex-
panding 8 ¥, 8 *), 8 1*! in terms of monomials of degree 3 in
(A4,,4,,45,B) and comparing the coefficients of each mono-
mial in both sides of (A7)-(A9). We obtain

! 1 !
@:ia)(Az J g ) g

653]:3( bl. A4, + CI. A1A3+“£A2A3>,

Y+ ilw Y —iw Y
(A10)

0 = — 224,44,

lw
+B(ﬁA1A2+ 2 44,4 A2A3),
Y 7’—21(0 Y —liw

(A1)

03 = — (a/v)A,4,A45 + (B /iw)A,(bsA, — c As5) .
(A12)

The above expressions completely determine the nonlin-
ear change of variables (3.2) which, together with (3.21),
give the complete solution of Eq. (2.1).

APPENDIX B: THE THIRRING MODEL AS THE NORMAL
FORM [s=2, /=0]

Here we prove that the Thirring model is the normal
form for the class parametrized by [s = 2,/ = 0].

We assume that #> Sup, Rel|y,| ', which means that
we are in the asymptotic regime, where all the variables B,
a = 1,...,M, have relaxed to zero and the dynamics is solely
described in terms of the critical variables (4,4 ¥, 4,, 4 ¥).

1247 J. Math. Phys., Vol. 28, No. 6, June 1987

In this regime, Eq. (3.8) reads as

gmmz(yAéi_Jym
7 o4,
=1 — flhg, =K, r=35,.m. (B1)

To satisfy the solvability condition K'"'eRan .7, it is
sufficient to choose !¢, in Ker £ T'CH# 071", or
equivalently, F=3 _,, ¢, inKer L 'CH &7,

1
((J*) A, f——J*)F:o.

[/l a Ai
By introducing an auxiliary parameter 7, Eq. (B2) can
be cast into the form

d

(B2)

L VT F(A) =0, A=4,$,, (B3)
dr
from which we deduce that
F(""A) =" F(A) . (B4)
For the class [s = 2,/ = 0], J'is given by
—iw 0 0 0
0 +iw 0 0
t— , B5
J 0 0 —iw O (BS)
0 0 0 iw

and therefore (B4) tells us that F is invariant under two
independent rotations by w7 in the planes (4,,4%),
(A4,,4%). Employing the above invariance and assuming
that the original system is 7 invariant [which means that if
0(?) is a solution of (2.1) then 0* ( — 7) is also a solution of
(2.1)], we obtain

F,=igA%4,4,,
F, = igd ¥4,4,,

F,=F%,

F,=F¥*, (B6)
where g is a real constant. Making now the change of vari-
ables

pr=A,+id% @,=A,—id¥, (B7)
we arrive at the following normal form for the class [s = 2,

I1=0]:

14
— 2 — g, + £ 910:0,,
i Ot 2
(B8)
1 dg,

8 x
= W + = ’
P o D) 2¢1¢1‘P2

which is nothing but the Thirring model for Grassmann soli-
tons® if we identify @ with the soliton mass and ¢ with an
appropriate variable defined in a comoving system with the
soliton.

APPENDIX C: SOME PHYSICAL APPLICATIONS

We show here the application of the method presented
in Sec. III to some physical examples. Let us consider a
quantum Fermi system described by a normal ordered Ham-
iltonian H (a},aj,t). By working in the fermionic coherent
state representation of Bargmann-Fock, we obtain that the
integral kernel of the evolution operator is given by the
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Grassmann integral,
U(ej*(f) ’tf ;6}'(‘,') Yti )

=f@(9;*,ej)

1 ,
Xexp(; (07 85y +0756,0) + lS) ) (CDH)

where
r . .
S=f dt(%(&}"&i _6r0) —h(e;r,ej,z)) (C2)
4 l

and 4 is the classical value of H when we replace the opera-
tors a;', a; by the Grassmann variables 8 ¥, ;. Explicit eva-
luation of the functional integral in (C1) leads to the evalua-
tion of the action .S on the extremal trajectory, satisfying the
classical equations of motion (Hamilton’s equations):

. i
Sg=2" (C3)
i a0;
. i
Lox_92 (C4)
i a6

Next, we illustrate the normal form method in three
examples involving Hamiltonian GDE.

Example 1: Let us consider the class parametrized by
[s =1, /= 0]. Its Jordan matrix reads as

Jz(iw —iw)'

Fortimes t>sup, Re|y,| ' theasymptotic dynamics is
described only by two variables 4,, 4 ¥. Since the only avail-
able nonlinearity is even, we readily conclude that the nor-
mal form is linear:

A, =iwd,

(C5)

|—1

(C6)

and corresponds to the classical equation of motion of a par-
ticle with spin- 1 and magnetic moment y submitted to the
action of a constant magnetic field B, (w =uB,). The
quantum and classical Hamiltonians are

H=B,S, =}uB,(a'a —ad"), (CT)
h=uB, (A4, —1). (C8)

Example 2: We consider two deuterons with an isospin—
isospin type interaction. The quantum Hamiltonian reads
(Ai=1)

H=0,plp, +nin,) + o,(pip, + niny) +gl+l,, (C9)

where p!, p; (n!,n;) are Fermionic creation and annihilation
operators of proton (neutron) states and the isospin opera-
tors |, |, are given by

I, =al(o),a, bL=0](c,);b (C10)
(o are the Pauli matrices and a, =p,, a, =n,, b, =p,,
b, =n,). Here, H in (C9) commutes with the charge
Q =pip, + pip, and the baryon number B = p{p, + p}p,
+ nin, + nin, We will prove that any term added to H
that breaks the Q-B conservation laws is an irrelevant or
gauge term since its classical counterpart can be completely
eliminated from the classical equations of motion (C3) and
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(C4) and therefore the evolution operator (C1) will remain
unaffected by the nonphysical term.

For simplicity we consider the Hamiltonian H + H’,
where

H' = A(plpwan, + nipipin]) . (C11)
The classical Hamiltonian equations read as (p,—6,,
ny— 0 P21, Ny 1)5)

(l/i)91 = w0, + g(20:m3¥n, + 6,(7Fn, — 1572))
+ A6, (7, + nENT)

(1/)6, = 0,0, + 826,71, + 0,(nn, — 9¥m)), (C12)

(1/0)7, = w,m; + 821,036, + 1,(6 16, — 636,))
—A810m¥,

(1/D)%, = w,m2 + 8(21,0 16, + 1.(6 36, — 616,))
+A8T0.7F .

We note that Eqs. (C12) correspond to the class [s = 4,

[ = 0] with Jordan matrix J = diag(£2,,02,,2,,Q),), with {;
= diag(iw;, — iw;), j = 1,2. Following Sec. III and using
the invariance property (B4) we conclude that there exists a
nonlinear change of variables (8,,7,) - (4;) such that the
equations of motion in the new variables contain only non-
linear terms equivariant under the one-parameter Lie group
generated by J': e 3. We easily see from (C12) that the
nonlinear terms with g in factor respect this symmetry while
those with A in factor break it and therefore can be eliminat-
ed.

Example 3: We consider two interacting fermionic oscil-
lators with Hamiltonian

H= }3: (-‘ii (ala, —apal) +22 (blb, —bb})
2 2

k=1

3
+g Y aIbIa,b,). (C13)

I=1
The interaction term has been constructed in such a way that
H commutes with the SU(3) generators:

0, = 2 (a;rc (A e, — b Z A¥)ubi),
where Aa are the Gell-Mann matrices.

The classical Hamiltonian A reads as (up to a constant;
a;—06;,b,-7,)

(C14)

h=w,0%0, + wmtn. + 80 kne0m (C15)
and the equations of motion are
(1/0)6, = 0,6, +gnfom, , (C16)

(1/0)7; = wm; + 8070, .

The associated Jordan matrix reads J = diag(£2,,Q2,,8},,
0,,0,,4,), with Q;, = (iw;, — iw;),j = 1,2, and it is easy to
see that the Lie group generated by J' leaves Egs. (C16)
invariant; therefore they are automatically written in normal
form. In other words, we have proved that the quantum
SU(3) symmetry induces the classical equivariance under
e implying the normal form of Hamilton’s equations.
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Lie transformations, similarity reduction, and solutions for the nonlinear
Madelung fluid equations with external potential
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The application of Lie-group methods to a system of coupled nonlinear partial differential
equations representing what is usually called a Madelung fluid is shown. The generating
operators of the transformation group that depends on five arbitrary group constants will be
constructed, and all subclasses of systems of ordinary differential equations derived by
similarity reduction will be presented in tabular form. Two subclasses of physical interest are
investigated in detail and the similarity solutions are compared with solutions found earlier by
the application of inverse scattering transform techniques to the cubic nonlinear Schrodinger
equation. Similarity solutions for the Madelung equations with linear external potential

'(x) = — fox are presented.

1. INTRODUCTION

In recent years considerable interest has been focused on
nonlinear evolution equations and their methods of solution.
Among the most powerful methods for solving nonlinear
partial differential equations are the inverse scattering trans-
form technique (IST) and the Lie-group-based similarity
method (LSM) originally initiated by Lie' in his classical
integration theory. The basic idea of Lie’s approach is to
study the invariance properties of given differential equa-
tions under continuous groups of transformations. If the
most extended Lie group of transformations of a given sys-
tem .S is known, then it is possible to construct classes of
particular solutions, called the similarity solutions of .S.

The LSM seems to be applicable to a broader class of
nonlinear evolution equations than the IST, which has been
applied intensively to nondissipative, nonlinear partial dif-
ferential equations (NPDE) representing completely inte-
grable Hamiltonian systems.?~® Solitons are the most promi-
nent examples of nonlinear solutions constructed by the IST.
The class of IST-solvable NPDE possesses a number of com-
mon properties such as infinite sequences of conservation
laws, Bicklund transformations with associated geometric
and group theoretical properties,” and Painlevé transcen-
dental equations characterized by no movable critical
points. Relations between solitons and Painlevé-type equa-
tions has been pointed out,®® and a unified approach to
transformations and elementary solutions of Painlevé equa-
tions has been developed by Fokas and Ablowitz.'°

When discussing dissipative nonlinear evolution equa-
tions such as diffusion-type equations'" or nonlinear kinetic
(Boltzmann) equations,'*™ it is seen that IST-like tech-
niques do not exist thus far. However, in all these cases, "¢
the LSM has been applied successfully in order to construct
similarity solutions. The most prominent examples of these
types of solutions are the BK W-mode solutions discovered
by Bobylev'® and Krook and Wu'® and classified in group-
theoretic terms'*"'? by making use of the LSM.

Motivated by a successful application of the LSM on
dissipative NPDE, one may ask to which extent the LSM is
also applicable to IST-solvable NPDE. Lakshmanan and
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Kaliappan®® have already investigated relations between Lie
transformations, nonlinear evolution equations, and
Painlevé forms of some pertinent examples of NPDE. They
applied the LSM and obtained by a similarity reduction of
KdV, sine-Gordon, nonlinear Schrédinger equations, etc., a
list of nonlinear ordinary differential equations (NODE),
which could be classified in part as Painlevé equations.

The central motivation of this article is to apply the
LSM to the nonlinear system of Madelung’s quantum fluid
equations, which represent a nondissipative system of
NPDE for the probability density p(x,f) = ¢*¢ and the
phase function S = S(x,#). These are related by the Made-
lung transformation®’

Y(x,t) =p exp( —iS/#), (1.1)

when 2 = 27#i is Planck’s constant and ¥(x,¢) and ¢¥*(x,t)
satisfy the cubic nonlinear Schrodinger equations

iy, = — (F/2m)¢,, + V(x)¢ + «|¢|*¢ (1.2)

and their complex conjugate. Here, V(x) is an external po-
tential and « is a real-valued constant.

It is well known that the system of NPDE (1.2) is IST
integrable.>® We note that (1.2) can be written as a Hamilto-
nian system by making use of canonical Poisson brack-
ets®**?* and we mention that the canonical transformation
(1.1) transforms®>?* the system of NPDE (1.2) for the com-
plex-valued functions ¥ and ¥* into a system of NPDE for
real-valued functions p and .S = m¢, which represents what
is usually called a Madelung fluid®'=2*:

1o
Vp Ix?

1

é, +?¢i +ap+T(x)= ; (1.3a)

pe+ 0. (pd.) =0,
with

a=«/m, B=#/2m? T(x)=(1/m)V(x).

We shall apply the LSM to the system (S) of NPDE
(1.3) in order to study the invariance of S under continuous
groups of transformations depending on one infinitesimal
parameter €. The most extended (€) Lie group of transfor-
mations, admitted by .S, will be shown to depend on five

(1.3b)
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arbitrary group constants, and the general class of similarity
solutions will be seen to separate into different subclasses
according to the number of nonzero group constants. It will
be analyzed to what extent these subclasses of similarity so-
lutions differ from (or coincide with) classes of solutions
already obtained by means of quite different analytical
methods.

Most of the previous attention in the literature has been
focused on the nonlinear Schrodinger equation (1.2) with-
out an external potential [ ¥ (x) = 0]. Including a potential
of type ¥ (x) = — mfyx, Alonso*® studied the invariance of
Eq. (1.2) under the Galilei group from the viewpoint of the
IST. In recent times, however, some interest in the Made-
lung fluid equations (1.3) came from hydrodynamics, in or-
der to describe weakly interacting Bose condensates.?5-2®
Analytical solutions of Eq. (1.3) have been found for @ = 0
and T'(x) = 0 by applying®® the Lie-Bicklund transforma-
tion, and for @ #0 [T'(x) = 0] by transforming the known
soliton solutions of the nonlinear Schrédinger equation
(1.2) to the fluid dynamical field variables®®*' p(x,¢) and
é(x,t). A systematic application of the IST or the LSM on
the system of Madelung fluid equations (1.3) has not been
given thus far. Hence we shall apply the LSM on (1.3) in
order to construct by similarity reduction the most extended
class of ordinary differential equations for the similarity
functions. Some of them can be classified as Painlevé-type
equations and some exact heretofore undiscovered classes of
similarity solutions will be presented.

The present article is organized as follows. First, in Sec.
11, we define the symbols and notation for the group genera-
tors, similarity forms, etc., by giving a brief reformulation of
Lie’s basic concept of a one-parameter (¢) transformation
group in a form that is applicable to the system (1.3) of
partial differential equations. In Sec. III we construct the
generators of the group, the similarity variables for the most
extended class, and some subclasses of physical interest, and
derive by reduction the corresponding classes of ordinary
differential equations, which are presented in tabular forms.
In Sec. IV we construct exact classes of similarity solutions
for the density p(x,) and the phase variable
S(x,t) = m¢(x,t), taking into account two choices for the
external potential [["(x) =0and I'(x) = — fx].

il. LIE GROUP OF TRANSFORMATIONS, GENERATORS
OF THE GROUP, AND REDUCTION SCHEME

Consider a system of partial differential equations with

two dependent variables p and ¢ and two independent vari-

ables x and ¢ [as in Eq. (1.3)]:
Hi (xlt’¢’ p’¢x’px’¢t’pt’¢xx’pxx"") = 0’ l'_“ 112’

(2.1
where subscripts denote partial differentiations. Consider
further a one-parameter (€) Lie group of transformations

x’ =f(x,t,p’¢; €)y tl =g(x,t,,0,¢, 6),

p =hixtpd; €), ¢ =jlxtpd; €).
Let p = 6(x,t) and ¢ = =(x,t) be solutions of (2.1). If we
replace the variables p, ¢, x, and 7 in Eq. (2.1) by v, w, and
x' = f(x,,0,Z;€), t' =g(x,1,0,Z;€), Eq. (2.1) becomes

(2.2)
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i=1,2.

(2.3)
Thenv=06(x',t') and w= Z(x',t') are solutions of (2.3).
We say that the transformations (2.2) leave Eq. (2.1) invar-
iant ifv = A(x,1,6,E;¢) and w = j(x,t,6,Z;€) are solutions to
(2.3) whenever p = 0(x,¢) and ¢ = E(x,t) are solutions to
(2.1). This condition implies that if Eqs. (2.1) and (2.3)
have a unique solution, then

6(x',t’) = h(x,5,0(x,t),2(x,2);€),
E(x ") =jx,t,0(x,t),E(x,1);€).

H (X't 0,0, W, 0, W, Vg s Wi yenn) = 0,

(2.4)

Hence 9(x,t) and =(x,t) satisfy the one-parameter func-
tional equations

(f(x,t,6,Z;€).8(x,t,0,Z;€)) = h(x,t,0,Z;€),

Z(f(x,t,0,E;€),8(x,1,0,Z;€)) = j(x,t,0,=;€).

(2.5)

Expanding (2.2) about the identity € = 0, one can generate
the following infinitesimal transformations:

X' =x -+ eé-] (x)t’ P,¢) + 0(62)’
t' =1+ €& (x,t, p,d) + O(€),
¢ =+ en'(x,1, p,8) + O(€),
p =p +en’(xt,pp) + O().
The functions &,, £,, %', and %” are the infinitesimals of the
transformations for the variables x, ¢, ¢, and p, respectively.
In order to find the infinitesimals we need to extend the
group to calculate how derivative terms transform. The
transformations (2.6), together with the transformations
for the first, second,... derivatives, are called first, second,...
extensions. We denote the infinitesimals for p,, p,, P, ¢»,

¢..and ¢,, by 91, 73, 71,, 71, 73, and 7y, , respectively. As
an example, we give

(2.6)

9 {éﬂ_‘ ! }_25_1 _9%;
"71—ax + a¢ ¢x+ ap px ax ¢x Hx ¢t
I TR TN T PR+
a¢ ¢x¢x ap px¢x a¢ ¢x¢t ap px¢t'
2.7)

Similar explicit expressions for higher extensions can be giv-
en.!! Using these various extensions, the infinitesimal crite-
ria for the invariance of (2.1) under the group (2.2) is given
by

/X\'HIIHI=0=07 i=12, (2.8)
where the tangent vector field Xis given by
S _% a d a J
X=X+ — 4l — 49> — 492 —
R T L
a J
+ 7 (2.9a)
17]1 a¢xx 7711 apXX
Ry=£0, + 60, +7' 2 12 2. (2.9b)
U 1¥x 24y a¢ ap

~

Here, X, is the unextended operator. Condition (2.8) pro-
vides an algorithm for finding &,, &,, 7', and %°. For any
solutionsp = 6(x,t) and ¢ = Z(x,t) of (2.1), Eq. (2.8) may
be treated as a form in derivatives of 8 and E whose coeffi-
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cients depend on (6,E,x,) and the unknowns (£,,£,,7",7%).
Collecting together the coefficients of like derivative terms
in @ and = and setting all of them equal to zero we get a
system of linear partial differential equations. In practice
these equations are solvable and thus £,, &,, 7', and %° are
determined.

Our objective now is to find 8(x,r) and E(x,¢) given that
(2.2) leaves (2.1) invariant. Expanding (2.2) about the
identity € = O we generate Eq. (2.6). We now use (2.6) to
expand the functional equation (2.5) about € = 0. This leads
to the following first-order partial differential equations:

§1¢x +§2¢t =771’ §1px +§2pr :772’ (210)
provided that £,, £,, ', and 57* are known functions of x, 1, §,
and p. Equation (2.10) is called the invariant surface condi-
tion. The solutions of (2.10) are obtained by solving the
following characteristic equations:

dx _dt _dg _

&1 2 "71 772
The general solution of these equations will involve three
arbitrary constants, of which one constant takes the role of
similarity variable § and the other constants, say F,({) and
F,(£), play the role of dependent variables (usually called
similarity functions). Thus we finally obtain the similarity
forms

v=E x,tF())

(2.11)

and
w = G {x,t,F,({)). (2.12)

Substitution of (2.12) into (2.1) results in a system of ordi-
nary differential equations for F,(§) and F,(&). The results
mentioned above for two dependent and independent vari-
ables can be extended to any number of dependent and inde-
pendent variables. In the following sections we will give an
application of the above procedure to the nonlinear
Madelung fluid equations (1.3).

lll. APPLICATION TO THE MADELUNG FLUID
EQUATIONS

A. The infinitesimal elements
In applying the infinitesimal Lie-group methods, a

straightforward calculation yields the following infinitesi-
mal elements of the e-Lie group [for the external potential

we take the choice I'(x) = — fix]:

&= Bx + Ft + H + 3Bfyt?,

& =2Br+C, (3.1)
= (F+3Bf)x + G+ fo[{Bfot® + (F/2)t* + Ht ],

7* = — 2Bp.

Thus we obtained a one-parameter group of transformations
depending on five arbitrary group constants (B,C,.F,G,H).
For the special case I'(x) =0, i.e., f;, = 0, it follows that

& =Bx+Ft+H, £,=2Bt+C,
7' =Fx+ G, 7°= —2Bp.

From the most extended group (3.1) one finds 22 nontrivial
subgroups listed in Table I, where taking £, equal to zero one

(3.2)
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obtains the equations for the Madelung fluid without exter-
nal potential.

The similarity variables § as well as the similarity solu-
tions @(x,t) and = (x,?) are found by solving the characteris-
tic equations (2.11). The results of these integrations de-
pend crucially on the number of vanishing group constants.
Here, we will focus our attention on the classes of similarity
solutions characterized by the choices B=0 and by
B = F = 0. It will be shown that these subclasses of similar-
ity solutions lead to solutions of the Painlevé II type and a
classical soliton solution.

B. Lie algebra constructed from the infinitesimal
operators

The knowledge of the infinitesimal elements £,, &,, 5',
and 7” given in Egs. (3,1) enables us to construct, from the
unextended operator X, [Eq. (2.9b)], five operators X
(i =1,...,5) according to the existence of five group con-
stants (B,C,F,G,H). Taking the group constants eql,l\al to 0
one obtains from (2.9b) via (3,1) the null operator X, = 0.
The five generating operators X; can be constructed by tak-
ing one of the group constants equal to 1 and the remaining
four constants equal to zero: for (B, C, F, G, H) = (1,0,0,0,
0) one obtains

P 3 d a
X =|x+— tz)—— 2t —
! (x ) TG
fo ) ]
3 tx+—-t —— 20—
(f° % P
for (0, 1,0, 0, 0) one obtams
2 at’
for (0, 0, 1, 0, 0) one obtains
X’ —t_a__+_( &t2)_(2_;
dx 2 J¢
for (0, 0, 0, 1, 0) one obtains
s ad
Xo=—-;
4 (9¢
and for (0, 0, 0, 0, 1) one obtains
5 aJ
X5 +f;)t7

These operators must form a Lie algebra. Thus, in general,
we have to prove that the commutator of any two operators
isa linear combination of these same operators with constant
coefficients C;,, (structure constants), i.e., the commutator
relation (closure property)

[X.X] =C;, %,
must hold and it must be shown that the following properties
for the commutators are being satisfied: (i) antisymmetry

[X.3]= - (%21,
and (ii) the Jacobi identity
[X, [ % 11+ [0, [XX )]+ R [X.X 11 =0,

Proving property (i) is equivalent to showing that
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TABLE 1. Similarity variables and ordinary differential equations for the Madelung fluid with I'(x) =

— fox.

Case Similarity variables Ordinary differential equations
— 2 _ 2 2,2 __ — 2 .. . .
B.C.G.FH %0 (= (F/B)(Bi+O) + H/B (f(,{/ZZB Y(B%?2— 2BCt—2C?) (F, — 2BYF, + Fy(F, — BE) 0
(2Bt + C)
8= B+ O L - S gl R, - b - S P+ P2 o,
—ln(ZBt-i-C)[G CHf, — FH C3fé—2C2Ffo+CF2] _ L e FH CH, CF
2, B? 2B3 2ﬂ3 """ BB’ BR® 28B?
+Lornhrog, -y + RO -l RS g
p=Fy(5)/ (2Bt + C)

B=0 ¢= x—(F/ZCI)?tH—(H/C)t o F,FZ+1;2(F,—H/C)= ;o F
= £? '+ —t Fi,——F_%p FZ[(—"——)
¢= 6C? +2C2 += §+C 22— ﬁ2+23 BC§

H H 1 ; G
—1? ———t) F, —F ——F}_——1=0
+ﬁ,(6c +2c + Fi($) +/3c' 8 "B
p=F(

C=0 ¢=1Ix —F(F/B)t+H/B— (%/Z)thI]/ﬁ (F, - 1>1F2 + Fy(F -4 =

¢=\/t'[—+fot]§+7lnt[5—?] FZFZ—TFi—%F§+F§
fi {FZ HfO] [ jo o, FH G ]
2243 ! —_ F —_— — e _— =
50+ fo triggr g TR® ¢F, ZB 2+ZBBZ 258
p=F(5)/t
x— (F/B®)(Bt +C) + H/B— (f,/2B*)(B%?— 2BCt — 2C?) . o

G=0 E= o C())‘” (F, — 2B)F, + F,(F, — B{) =

s=pr+ 0Ly Sple Fh - L —%#
3 2 2 ., 2
——ln(ZBt+C)[CHf° FH Cﬁ_ngff”CF] 4 F2 §Fl L FHCP
f3 S C2Ff Cf3 d HCfBB e
EAN 20 (F_ () 22 _2HB F, ——2°_ 0]:
+3 P+t 5 fo Cf3 o) + Fi(£) 552 287 pa 0
p=F,({)/ (2Bt + C)

_ _x+H/B— (f/2B?)(B*t*> —2BCt—2C?) . L.

F=0 = TR (Fy—2B)F, + Fy(F, — B) = 0
4= (2Bt+C)”2[fot—£ﬁ)]§ Ry =5 F} =S4 3

G | CHf, Cfo] {1 . 1 .,
+LtmeBi+c Lk - L
2n( + ){ 1324—2193 Xﬁé‘, 6
s oF G CHf, Vi
L2 Eop2 gy C? 2HB F —————0——"]:0
+ 3 B 232( fe+ o) + Fi(£) 3 8B 2B?
p=Fy(5)/2Bt+ C)
_x—(F/B*)(Bt+C) — (f/2B*)(B?* — 2BCt —2C?) - o

H=0 f= TSI (F, —2B)F, + F,(F, — BE) =0

é= (2Bt + C)”Z[£ +f0t—£f(,]§ FZFZ—%Fi _%Fg
c? 2C*Ff, + CF? . . 2
_ln(23t+c){0 i 233f0 ] +F £§F'__2%’F% (Zﬂg‘)
CF? (C?
+fT°z +t2f;(F—Cf0 C¥2) + F (D) _W_Tgoz_% -
p=F(5)/(2Bt+ C)
C=0and G=0 t=[x—(F/B)t+H/B— (fo/z)tfz]/ﬁ (F,— DF,+ F,(F, —16)=0
F | FH F _
¢=‘/T[E+fot}§ ST T F2F2—7F’——;—F3+F2
F Hﬁ,] {_ __. FH]
+'{2192 B +E© ¢k, 28 1+2332
p=F,(5)/t
x+ H/B— (f,/2B¥)(B%?—2BCt —2C?) . . B

G=0and F=0 £= 0(2Bt+C)”2 (F, —2B)F, + F,(F, —B{) =0

8= o+ 0relre—Sple R- 3P -2 P4 F}
CHfO Cfo] [B ~ 1 ., CHf, C3f%]_
—1In(2 Lo L2 - =
ln( Bt+2C){ + 53 X ﬂg' w5 "5 2
+fT°t3——C’;° t? 2f2 L 2HBf,) + F({)
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TABLE L. (Continued.)

Case

Similarity variables

Ordinary differential equations

F=0and H=0

B=0and G=0

p=F,(5)/(2Bt + C)
x — (fo/2B*)(B?t? — 2BCt — 2C?)

&= (2Bt + C)'/?
¢ = (2Bt + C)”z[ﬁ)t——c-j;,]g
G CBfo]
—] 2 C
C 2
+£3°—t - J;" 2 21{2“ t+ F (&)

p=F()/(2Bt+ C)

f=x— (F/2C)t + (H/C)e

(F, — 2B)F, + F,(F, — B{) =0

. 1. a
Fze——2~F§ —/—9—F§ +F3

FF,+ Fy(F,~H/C)=0

F? F 3 H 2) i 1 oy a s 2
t P+ =1+ F FF,——F _2FpiF
s 2C? e §+ (6 t ) TRO o0 B”LZ
F H . 1
= F,(£) X((—O————) —F——-lez()
p=F 5 8c) T ach 28!
C=0and F=0 ¢=[x+H/B— (fyDtINT (Fi—DF, + Fy(F —16) =0
6= J‘ﬁ)tg+_1nz+f3 3 fg:’urF(g) FZE—%Fé—%FHF%
1. 1 G
=Fy(8)/1 x[——F——FZ-__]z
x— (F/B?) (Bt + C) — ( fo/2B*)(B*t? — 2BCt — 2C?) % oo
G=0and H=0 = OB Oy (F, —2B)F, + F,(F, — Bt) =
6= (23z+c>'/2[§— +fot—%f0]§ FJE—%H —%—Fi
1 C3f~—2C2Ff+CF2} 2[3 ; 1
—In(2Br+ C o e F2Z¢F — — F?
+22n( t+ ){ 2B32 202 + Zﬁgl ZB I32
fo 3,2k F-Cf% CF>  C°Ff, Cfo]
— 7+ 1?2 (F—-C —— 4+ F — o _ =0
+ 3 + B( fo) +t TE + Fi($) BB g 3pB?
p="Fy(£)/(2Bt + C)
B=0and F=0 t=x—(H/C)t FF,+ F(F -~ H/C)=0
¢ = (G/C)t + (foHl /20)1% + F,(£) FJ%—%‘FZ —%Fi +F3
H . 1 G
=F() l +-—=—F ——Fz——]=0
p=F(¢ sLﬁc‘zﬁ‘ﬂc
C=0and H=0 t= [x—(F/B)t—(fo/Z)tz]/\/— (Fy, = DF, + Fy(F, — 1) =
£ g1
4= r[ +htle +2_1m+T°za Fze—yFl—%FiJer
F Ao 1o _G_]_
Bﬁ’ 232 © [ o, 23 i 288
p=F(5)/t
B=0and H=0 &= x—(F/2C)t2 FF,+FF =0
. 1.
s=ErrLar Sl r F2F2—7F§~1F§+F%
F G
flb-ge)er -2l o
p=Fig 5 )" e
C=0,G6=0, E=[x+H/B~ (fy2)2I T (Fy = DF,+ Fy(F, — 1) =0
and F=0 ¢ =t fotb + (f3/3)¢° — (Hfy/B)t + F\(£) FF, —1F? —%F; + F2
p=Fy )/t [(1/2B)6F, — (1/2B)F3] =0
_ _ _ x—(fo/2BY)(B%?—2BCt —2C?) » I
G=0, F=0, (= QBT O (Fy —2B)F, + F,(F, — BS) =
and H=0 = (2Bt + C)”Z[fot—%fo]; FJ}—%F% —%Fi + F2
C32 . X 3
+ L8 om0 x[i§F1——l—Ff f°}=
2 2B B 28 2(3B*
. %tg_Cfé .2 szét Fi(&)
3 B 2 th
p=F(£)/ (2Bt + C)
B=0, G=0, C=x— (H/C)t FIF, + F)(F,—H/C)=0
and F=0 ¢ = (foH /2001 + F,(£) FZE—%M -%F% +F}
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TABLE L. (Continued.)

Case Similarity variables Ordinary differential equations
1 .
= Fy{{) [ —F-—F2]=0
14 2§ §+BC 1 2B 1
C=0, F=0, E=lx— (fyD)e2INt (F, — OF, + Fy(F, — 1) =0
and H=0 S= TSl + (G/2B)nt + (f3/3)° + F\(0) FZFZ——;—FZ _-Z;F; +F?
~ G
= RO/t [— b g G
P (& g 1 2B 2 268
C=0, G=0, £= [x—(F/B)t—(fo/Z)tz]/\F (F,—DFE+ E(F, -1 =0
and H=0 = \/_[F+ﬁ)t]§+—t + f0 FZFZ—%Fg_%F;JrFZ
1 .
=F(O/t {— i ——-FZ] 0
P 28 X 2ﬂ§ 1 2B
B=0, G=0, E=x— (F/20)t? FF,+FF =0
and H=0 ¢ = (F*/6C)3 + (F/C)t + fo(F/6C)t> + F\(£) F2F2~%F§ 2 F4F?
F
- (pe)e-r-o
4 2 (& X B BC 'y Fi

C=0,G=0, F=0, ¢=[x—(f/2)2INT

(F,— DF,+ Fy(F, —1£) =0

and H=0 ¢ =t fots + (f3/D1° + Fi(§) Fzﬁz—%Fz—%FwF%
= Fy (&)t FZ] 0
4 2(£) { SF — 25
Ciu = — Cits Finally we notice that the special choice f; =0 in the

and the Jacobi identity (ii) is equivalent to showing that
Cqm mkn Cjkm Cmm + Ckim ijn =0.

All these properties (closure relation, the property of anti-
symmetry, and the Jacobi identity) for the operators X, fol-
low immediately from T/gble II (commutator table), which
shows, in addition, that X, is a Casimir operator, i.e., it com-
mutes with all the operators X.

I

x— (F/B?)(Bt+ C) + (H/B) — (f,/2B?)(B*t?

— 2BCt —

operators X; leads to the Lie algebra for the Madelung
fluid equations without external potential.

C. Similarity variables

(1) The most extended class of group constants
(B,C,F,G,H), all unequal to zero, leads to the following
similarity variable £ and to the similarity solutions ¢ and p:

£= (2Bt 1 C) /2

¢= 2Bt +C)*¢ {fo Cf" E] + %ln(ZBt +0O)

B
G CHf,— HF C>} —2C*Ff,+ CF?

X 1=+ . ;
B B 2B

3 JF=13C C*fs —28BH,
3 B 2B

TABLE I1. Commutator table for the Madelung fluid with external poten-
tial [(x) = — fix.

{,1] X X, X, X X, X
X, 0 0 0 0 0 0
X, 0 0 — 36X, X, 0 —Xx
X, 0 ¥X 4%, 0 X 0 £
X, 0 - X, —X, 0 0o -X
X o 0 0. o o o0
Xs 0 X5 —foXs X, 0 0
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2
200 (3.3a)
r
+F (), (3.3b)
p=F,(£)/(2Bt + C). (3.3¢)

The similarity functions F,({) and F,({) are to be deter-

mined later. The special choice I'(x) = —fx =0, ie,
Jo =0, yields
¢=[x— (F/B)t—FC/B*+H/B1/[(2Bt+ C)'"?],
(3.4a)
¢ =— (2Bt + OV 4 — ln(2Bt +0O)
G FH FZC] F?
- = + —1t4+ F(), (3.4b)
X[B B 2B°)  2B? (&)
p=F,(£)/(2Bt + C). (3.4¢)
(ii) Subclasses
(a) (B,C,F,G,H) = (0,C,F,G,H)
C=x—(F/20)t? — (H/C)t, (3.5a)
G. Baumann and T. F. Nonnenmacher 1255



¢=F2:Cf2°FCt3+HF;C’Z°HCt2+ Fg;G t+Fy(0),

(3.5b)

p=F(%). (3.5¢0)
For I'(x) = 0, this result reduces to

C=x—(F/2C)t* - (H/O), (3.6a)

¢=6F;2t3+ zlg;tz+F§;'Gt+Fl(§), (3.6b)

p=F(&). (3.6¢)

(b) (B,C,F,G,H) = (0,C,0,G,H). The choices B=0
and F = 0 produce the results

f=x—(H/O), (3.7a)

= (fH/2C)t> + (G/C)t + Fi({), (3.7b)

p=Fy(&). (3.7¢)
For I'(x) = 0 one obtains

F=x—(H/O)n, (3.8a)

¢ = (G/C)t+F(£), (3.8b)

p=F(0). (3.8¢)

We note that the similarity functions F,({) and F,({) obey
ordinary differential equations, which are obtained by inser-
tion of the corresponding expressions for ¢ and p into the
original partial differential equations (1.3).

D. Reduction to ordinary differential equations

(i) The most extended class [all group constants
(B,C,F,G,H) unequal to zero] leads—by making use of the
results given in (3.3)—to the following system of ordinary
differential equations (ODE) for F,({) and F,({):

(F, — 2B)F, + F,(F, — B¢) =0, (3.92)
S 1 a B, 1,
2C2Ff, — CF? — C*f} FH—fOCH_g]_O
23B? BB )
(3.9b)
Taking I'(x) = O we obtain
(F, — 2B)F, + F,(F, — B{) =0, (3.10)
. 1 . a B . 1 .
F2F2—7F§—EF§+F§[—B—§F,—§F§
2
—E(FC —g——gi)}=o. (3.10b)
B \4B® ' 2B 2B?

(ii) Subclasses
() (B,C,F,G,H) = (0,C, F, G, H) The results (3.5)
lead to

F\F,+ F)(F,—H/C) =0, (3.11a)
FF,——F2 - —F3 FZ[—F ——F
242 2 2 B 2 + 2 ﬂC 1 ZB 1
5 (&—h)+55)]
(L (E_f)e+ S\ <o, 3.11b
(H(Err g it
and for I'(x) = O one obtains
F\F,+ F,(F,—H/C) =0, (3.12a)
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N 1. a
FF,——F; —-—F;
S

H 1 ; 1 (F G
Fz{_F_——FZ_—(_ _)]= '
+ 15 BC 1 2B 1 I C§+C 0
(3.12b)

(b) (B,CF,GH) = (0,C,0,G,H) The results (3.7)
yield

F\F, + F,(F,— H/C) =0, (3.132)
. 1. a
FF,——F: _ZF?
252 2 2 B 2
H . 1 . fe G
+F2{———F ——F2 420 ——]=0. 3.13b
3 BC 1 B 1+ﬂ§ BC ( )
Taking I'(x) = O one obtains
F\F,+ F,(F,—H/C) =0, (3.14a)
. 1. a
Fze~~2—F§—E-F§
H . 1 . G
+F2{——F —-——FZ——-—]=O. 3.14b
2 ﬁC 1 zﬂ 1 ﬂC ( )

All other ODE are listed in Table I.

IV. EXACT CLASSES OF SIMILARITY SOLUTIONS

In Sec. III we reduced the Madelung fluid equations
represented by a set of nonlinear partial differential equa-
tions (NPDE) (1.3) to various systems of nonlinear ordi-
nary differential equations (NODE) for different choices of
the set of group constants. Here we will construct analytical
solutions of some special classes of NODE.

The first objective in the study of such NODE is to as-
certain whether or not a solution can be obtained either ex-
plicitly or implicitly in terms of classical functions. The pur-
pose in such a study is to discover a transformation which
will reduce the equation to some type that is known to have a
solution of the desired kind. Failing this, one seeks a trans-
formation which will reduce the equation to one that is
asymptotic to a form solvable by known functions.

A. Solutions of elliptic form

Following along this line we will give, as a first example,
the solution of the coupled nonlinear equations:

F\F,+F,(F,—H/C)=0 (4.1)
and
. 1. a
F2F2—7F§—-EF;+F§
H . 1 G
X[——F ——F? ——] =0, 42
s " T B 4.2)

where overdots denote differentiation with respect to ¢, the

similarity variable. This system is just subclass (ii) of case

(b) from Sec. III [Eq. (3.14)] without external potential.
The first of these two equations can be integrated to give

5
I H
ro = [ (s + E)a,
‘ G \F(6) ' C
where 7, is a constant of integration. Substituting Eq. (4.3)

(4.3)
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into the second of the coupled system, Eq. (4.2), it reduces
to the form

Fzﬁz—-;—Fg—%F;—Fg
2 I?
X{_G___I_(E)]__l_zo, (4.4)
pC 28 \C 28

which is an equation for F, alone. By means of the transfor-
mation

Y’ =F, (4.5)
Eq. (4.4) takes the form
a ; 1 I 1
—— Y —— ey —-—— (4.6)
YT TN T sy
with
0=1{G/C—{(H/C)}.
Introducing a “potential” V(y) by
a 1 11 It 1
Viy)= ———y*'——o—y*+——, 47
W==% %X 22 T
one can write Eq. (4.6) as
d ( 1 -, )
L =y + V¥ =0. (4.8)
a ¥ YW
By integrating Eq. (4.8) twice it follows that
‘4 Y '
J d§’=J __i___, (4.9)
V2E— V(")

where E is a constant of first integration. The potential V(y)
given by (4.7) determines this solution in a characteristic
way. To see this the following transformation of both the
dependent and the independent variables

§=Va/B¢
and

y=x*+ (1/6a)w
leads to a standard form of Weierstrass elliptic functions

(4.10)

o= [ ——2—, (4.11)
V&’ — gy — 85
where g, and g, are given by
g, = (3/16a*)w® — 8(EB /a),
_4ES, TF 1 s
3 o aBf  166a°
If we now invert all our previously used transformations ap-

plied top and ¢, and to ¢ as well we can write the solution for
the density p and phase ¢ as

p(x,t) =p{Ja/B [x — (H/C)t] — L.} — (1/6a)w

&3

(4.12)
and
T
+J’ 1, d¢ ’
p(Na/BE—1) — (1/6a)(a)/6a)(4 13)
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where I, and I, are arbitrary integration constants and { has
the form of a “moving wave variable” { = x — (H /C)t,i.e.,
the solutions represent traveling nonlinear waves.

It is well known that there exists a close connection
between Weierstrass elliptic functions and Jacobi elliptic
functions. To see how this relation appears in this system of
equations we turn our attention back to Eq. (4.3). If we set
there the arbitrary constant /, equal to zero, one can write a
first integral of (4.1) as

F(&) =(H/OE+1, (4.14)

where 7, is an arbitrary constant of integration. This form of
F, (&) solves (4.1) for any F,(&). However, there exists on
the other hand a strong coupling between F|, and F, via
(4.2). Inserting the solution (4.14) into Eq. (4.2) one can
discard this coupling. The result is

F,F,—1F? — (a/B)F} — (w/B)F} =0, (4.15)
which is a nonlinear ordinary differential equation for F,

with constant coefficients. By means of the transformation
(4.5), Eq. (4.15) is reduced to the form

¥ — (a/2B8)y* — (1/2B)wy = 0. (4.16)

Introduction of the “potential” ¥, (y) results in the reduc-
tion to

- _9h (4.17)
I
where V,(y) is a polynomial in y of fourth order:
a 1 1 1
V = — = e — i 4.18
1Y) 2B 4 X 28 @ 5 X ( )

Here we dropped an arbitrary constant in ¥;. We note that
this potential is a special case of V resulting from (4.7) by
taking I, = 0. An implicit solution for y follows by integra-
tion of (4.17). Because V,(y) is a polynomial of fourth or-
der this solution belongs to the class of Jacobi elliptic func-
tions. The formal solution is

X '
= f S SN (4.19)
V2(E—V(x")
where E is an integration parameter which strongly deter-
mines the behavior of this solution. For @ <0, >0, and
o > Ointegration of (4.19) can be carried out, with the result

x(&) = b, en({([a]/4B) (@5 + b7) (£ — Eo)m),
(4.20)

where cn is the cnoidal elliptic function. Here, a,, b, and the
modulus m are given by

@t = —o/|a| +(o/[a))* + 8BE/lal,

4.21)
b2 =ow/|a| +(w/|a])’ + 8BE /|a|,
m=b,/\Jai +b3. (4.22)

The initial phase &, can be expressed by an initial condition
for y:
1
So= 5 .
Jel/aB)(at +b7)

where y (0) is the value of y at § = 0.
Elliptic functions such as those given in (4.20) belong to

cn~ Ny (0)/b,,m),
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the class of doubly periodic functions with 2K, and X is the
complete elliptic integral of the first kind. Another interest-
ing property of this cnoidal function is the fact that cn tends
to the hyperbolic function sech if the modulus m is equal to
unity, i.e., cn»sech if m— 1.

If we suppose that our group constants C,G,H are fixed
and a, B are finite-valued constants then the modulus m is a
function of E. Setting this parameter equal to zero m is equal
to 1. In this way solution (4.20) skips to the hyperbolic func-
tion sech, as noted above. In detail, this solution is given by

¥ (&) = Qw/|a])'? sech(Jo/2B (& — &) (4.23)

Inverting the previously used transformations we can give
an explicit solution for the density and phase of the
Schrédinger field -

H H
p(x,t) = —|2a£| sechz( , —2% (x -C t— (x0 -C to))>

(4.24)
and
S(x,t) =(H/C)[x— (H/C)t]+G/C+ L, (4.25a)
where
w=G/C—1(H/C). (4.25b)

A graphical representation of these solutions in space-time is
given in Fig. 1 for p. One notes that the pulselike solution
moves with constant velocity through space.

As stated in the Introduction, the Schrodinger field ¢ is
related to the density p and phase ¢ via the Madelung trans-
formation (1.1), where S(x,t) = m¢(x,t). Inserting the
density and phase into this transformation one finds

Y(x,t) = \/% sech(\/—% (x — % r— (xo - ’Ici tO)))

i (H H G
sexp( —Lm(E(x—E )+ C 1 )
exP( fim<C (x C )+c+ 3)

This representation of ¢ has just the same form as Alonso’s*
result constructed by using IST techniques.

B. Connection to the Painleve Il function P,

The second system of coupled nonlinear ordinary differ-
ential equations, which we investigate, includes the equa-
tions of subclasses (ii) (a) [Eqs. (3.11) and (3.12) ] and the

L

FIG. 1. Classical soliton solution (4.24) of the Madelung fluid for the group
constants (0,C,0,G,H) and for f = 0.
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first equation of (ii) (b) [Eq. (3.13)] of Sec. III. This system
has [in contrast to the previously discussed equations (4.1)
and (4.2)] analytical coefficients. It reads as

F\F,+ F)(F,—H/C)=0

and

(4.26a)
e 1 . a
F,F, ——2—F§ — EF% + F3

H. 1 ., |1 G
x{ F.——FT—§{7’§+3}}=O' (4.26b)

Bc' p
where ¥ is given by the relation
v, =F/C, for f,=0 and (0,CFGH),
y=3v,=F/C—f, for f,#0 and (0,C,F,G,H),
Vs = —fos for f,#0 and (0,C,0,G.H).
(4.26¢)
The independent variable { takes the form
S=x—(F/2C*— (H/O)t, for y=v,,
S=x—(F/20)t> — (H/CO)t, for y =7, (4.26d)

E=x—(H/C)t, for y=y,.

Taking ¥ equal to zero, i.e., either F or f, equal to zero, it
follows the previously discussed ODE system. The main dif-
ference between the two systems is a {-dependent term con-
nected with y. Thus we have to solve a coupled system of
equations that possesses a dependence on independent vari-
ables. To solve these equations we proceed in the same way
as in Sec. IV A. First we integrate (4.26a) and obtain the
function F, as an implicit solution of F:

i H
Fi( ):J ( 1 +—)d ", (4.27)
(& FEe) T ¢
For I, = 0 it follows that
F (&)= (H/CK+ 1, (4.28)

Substituting this result in (4.26b) leads to
FFy, — 3y F3 — (a/B)F3 — (1/BF3{yt + 0} =0,
(4.29)

where w is defined in (4.25b). Transforming both the depen-
dent and independent variables by

z=2B/7)"*(1/28){¥¢ + o} (4.30a)
and

x° = (a/48) (2B /y)**F, (4.30b)
one obtains

¥ =2 —zy(2) =0, (4.31)

where primes denote differentiation with respect to z. This
second-order nonlinear differential equation is a special case
of the so-called Painlevé II type equation. As shown by Pain-
levé,’” this type of equation is irreducible and possesses
neither movable branch points nor essential singularities. On
the other hand, this equation defines a new class of transcen-
dental functions. We see (as a by-product) that—following
Ablowitz et al.>—the Madelung fluid is of the IST type,
which is not surprising since the corresponding system of
nonlinear Schrédinger equations (1.2) is also IST
integrable,
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FIG. 2. Representation of the asymptotic solution (4.33) for small p with
group constants (0,C,0,G,H) and external potential.

To follow our introductory proposals we now approxi-
mate (4.31) in such a way that at least an asymptotic analy-
tical solution for this equation can be given. We require that
this solution decay rapidly enough as |x| — « (say) that the
integral of p is defined, i.e., p—0 for |x|— . As stated
above, p is connected with y by

pex’.
If we take the positive square root of p we can discuss the
whole solution in terms of y. Assuming now for the asymp-
totic solution that p is a small quantity, we can neglect prod-
ucts of y in Eq. (4.31), which is then reduced to

x" —zy(z) =0. (4.32)

Equation (4.32) is the definition equation of Airy functions
in differential form.>* The approximate solution for small p

is therefore given by
¥ < Ai(z2). (4.33)

The asymptotic solutions of Airy functions are>®
x < (1/2{7) (1/2"*)exp( — 2(2)%?), for z— o,
x« (1/2"*)sin(3|z]>? + ¢,), for z— — co.

Up to now we have solved a coupled nonlinear system of
equations with an arbitrary independent variable &. These
solutions are

pxPyL(L),

FIG. 3. Asymptotic solution for small p with (0,C,F,G,H) and y = y, or
Y=72
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(3.5b)
¢ =14 (3.6b),
(3.7b)

and § as in (4.26d). If we now specify the explicit combina-
tion of x and ¢ in § we have to distinguish two cases strongly
dependent on the values of the group constant F. Taking the
choice B = 0 and F = 0 one gets an ordinary traveling wave
with

=x— (H/O)t (4.34a)

The solution for the density p(§) = p{x,?) is shown in Fig.
2. The choice F #0, i.e., regarding the more general sub-
group (0,C,F,G,H), one obtains the similarity variable

$=x—(F/2C)t*— (H/C)t. (4.34b)

This is somewhat like an “accelerated wave variable.” The
corresponding solution p (x,t) is plotted in Fig. 3. In contrast
to the soliton- or solitary wave-type solutions based on ¢§
given in (4.34a), the solutions based on the similarity vari-
able (4.34b) are called boomerons in the literature (see Ref.
34). Finally, we note that the soliton-type solution based on
(4.34a) is, in addition to its Lie-group properties, Galilei
invariant as well, while the boomeron solution based on
(4.34b) is not invariant with respect to a Galilei
transformation.
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A generalized isovector formalism is used to derive the isovectors and isogroup of the self-dual
Yang-Mills (SDYM) equation in the so-called J formulation. In particular, the infinitesimal
“hidden symmetry” transformation, a linear system, and a well-known Bicklund
transformation of the SDYM equation are derived in the process. Thus symmetry and
integrability aspects of the SDYM system appear in natural relationship to each other within

the framework of the isovector approach.

I. INTRODUCTION

In a recent paper’ the authors discussed the application
of isovector techniques® to systems of partial differential
equations corresponding to exterior equations for vector-
valued (and, in particular, matrix-valued) differential
forms. It was seen that the application of the Lie derivative
operator on vector-valued one-forms presents some techni-
cal difficulties, and for this reason an internal exterior deriva-
tive (i.e., an exterior derivative that acts on the fields but not
on the variables of the solution manifold) was introduced by
the formula

dF (x* ') =dF — d,,F dx*, (LD

where Fis any function of the scalar variables x* of the solu-
tion manifold and the vector-valued fields ¢'. If the system of
partial differential equations (PDE’s) is of order 2 or higher,
the variables ¢ will comprise the dependent variables «* of
the PDE’s and the derivatives, up to a certain degree, of the
u® with respect to the x*. Given that, in the absence of specif-
ic restrictions on the exterior differential forms that repre-
sent the system, the variables ¢/ are considered independent
of each other (and of the x*), we conclude that the problem
can be naturally formulated on a jet space with “mixed”
(i.e., both scalar- and vector-valued) coordinates.

In the present paper the formalism developed in Ref. 1is
applied to the self-dual Yang-Mills (SDYM) equation in
the so-called J formulation.* It is seen that the isovector
method provides a natural framework for the unification of
such distinct concepts as symmetry and integrability. The
independence of the coordinates of the underlying jetlike
space is important in this context, as the reader will realize.
In Sec. II we calculate the isovectors of the SDYM system.
These vector fields can be used to construct infinitesimal
symmetries (both geometrical and internal) of the system,
as discussed in Ref. 1. The above-mentioned independence
of coordinates is used in Sec. III to rewrite certain symme-
tries in a form equivalent to the parametric infinitesimal
transformation introduced in Ref, 5. (This transformation is
related to the so-called hidden symmetry of the SDYM
field.®) Remarkably, the process also yields a pair of linear
“inverse scattering” equations, the integrability of which is
equivalent to the SDYM equation, and the parameter of
which is identical to that of the infinitesimal transformation
mentioned above. Finally, the results of Secs. I-11I are used
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in Sec. IV to derive Bécklund transformations for the
SDYM system. In particular, the process gives the parame-
tric Backlund transformation proposed in Ref. 7.

Il. ISOVECTORS OF THE SDYM SYSTEM

The SDYM equation in the J formulation is written

as4—7

I 1) +d,(J7'4,J) =0. (2.1)
The complex coordinates y, z, 7, and Z are related to the
coordinates x,, x,, x5, and x, of complexified Euclidean
space by

212 = x, 4 ix,, 2"%z=x,—ix,,

(2.2)
2% = x, —ix;, 272 =1x,+ ix,.
[ Note that the pairs (y,5) and (z, Z) involve elements that
are complex-conjugately related in rea/ Euclidean space.]
For our purposes, J is assumed to be a nonsingular element
of the algebra gl(¥,C) in its defining representation.

Equation (2.1) can be rewritten as a set of first-order
PDE’s:

Bl+B:=0, B'=J7'J,, B*=J"'J,, (23)
where a standard notation for partial derivatives has been
used. We are thus led, in the spirit of Ref. 1, to define the
following set of four-forms in seven variables:

y,=dydzdB'dz +dydzdydB?,
v,=dJdzdydz — JB'dydz dy dz,
vy =dydJdyds — JB? dy dz dy d&.

(2.4)

It is easily seen that the dy, are in the ideal of the y, ; thus
this ideal is closed.

We now proceed to find the isovectors of the system. For
this purpose we must expand the Lie derivative of each y;
into a “linear” combination of all three ¥, . The expansion
must be made consistently with the requirement that the Lie
derivative preserve the tensorial character of each y; sepa-
rately.

Now, from Eqgs. (2.4) it can be seen that the four-forms
¥ have values in gl(N,C), which is closed under both addi-
tion and multiplication. This observation suggests the fol-
lowing expansion:

© 1987 American Institute of Physics 1261



£y, =b e+ Al + Ml (2.5)

where the b ¥ are scalars, whereas the zero-forms A¥ and M ¥
have values in gl(¥,C).

The vector field V'is defined on a jetlike space with “co-
ordinates” y,z,7,Z,J, B!, and B°. As argued in Ref. 1, V' will
have a formal representation,

d a ad d
V=D'Z-4+D>= 4+ D3= 4 D=
dy dz ay dz

d a a
4+ G—+A'—— 4+ 4 —,
aJ OB! + dB?

wherethe D ',...,D * are assumed to be scalar functions of y, z,
9,z, whilethe G, 4 !, 4 % are gl(&,C)-valued functions of the
above four variables and J, B !, and B 2. Asin Ref. 1, we seek
vector fields V' for which the coefficients of expansion in Eq.
(2.5) depend only on y, z, y, and Z.

Substituting Egs. (2.4) and (2.6) into Eq. (2.5), and
using Eq. (1.1) to write

£dJ =dG =G, dy* + dG,

£dB*=dA* =A% dy +dA* (k=12),
where the p* (u = 1,...,4) denote the y,...,Z, we obtain a set of
three exterior equations for four-forms. By equating the co-
efficients of dy dz dy dz on both sides of each exterior equa-
tion, the following set of PDE’s is derived:
A;+47=— (b7 +ADJB' — (b + A1)JB?

—JB'M? —JB*M?,

G, —GB!'—-J4! —Df;JB‘

= — (b3 +A})JB' — (b3 + A3)B?

(2.6)

—~JB'M2 —JBM?, (2.7)
G, —GB*—JA* - D" JB?
= — (b3 +A3)JB'— (b3 + A3)JB?
—JB'M? —JBM?3,
where D#=D"',....D*.
We now put
A'=a* (B +B' () +4'#B D), 28)

G =8()B* + e(y)J + GU*B*J),
where the @™, B, 8% and € are scalars. Then

dA'=o*dB*+p'dJ+dd’,

dG=6“dB* + €dJ + dG.

We substitute these expressions into the expansion of
Eq. (2.5) and equate coefficients of terms that are scalar
multiples of similar gl(V,C)-valued basis four-forms. There
are 12 such basis four-forms; therefore we obtain a set of 36
equations (eight of which are trivial identities). These re-
sults can be summarized as follows:
Bl:ﬁ2=61252_:0; alZ_:D;’ CZZI‘—‘D;;
D;=D;=0, D;=D2=0,
D}=D}=0, D}=D!=0
bi=D,+D2+D}+a?=D,+D24+D?+a',
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bi=D+D}+Di+e b3=D,+D:+Di+e
by=—D}, bi=—-D), bi=bi=by=0b}=0.
We notice, in particular, that the D ' and D ? depend only ony
and z, while the D? and D * depend only on 7 and Z.

The remaining terms in the expansion of Eq. (2.5) are
those that cannot be expressed as scalar multiples of basis
four-forms [in the sense that the coefficients in these terms
do not commute with the gl (V,C)-valued basis four-forms].
Terms of this type can be divided into four kinds according
to their dependence on the basis three-forms dy dz dy,
dydz dz, dy dy dz, or dz dy dz. The gl(N,C)-valued coeffi-
cients of each of these basis three-forms must be equated in
each of the three exterior equations; this process yields a set
of 12 equations which can be divided into two general types:

AdY + (dY)M* =0, i#k, (2.9)
and

dH = A} dY + (dY)M ¥, (2.10)
where Y=B"',B? Jand H=A4', 4% G. The variable Y, by
assumption, does not commute with Af and M ¥ Thus Eq.
(2.9) is satisfied only if A¥ = M ¥ = 0,i#k. Also, given that,
by definition of the internal exterior deri_vati\_/e and by as-
sumption about the A*¥ and M ¥, dY =dY, dAf (3*) =0,
dM ¥ (*) =0, Eq. (2.10) can be integrated immediately:

H=ALY + YM{ +h(™),

where 2()*) is an arbitrary function. Our results are explicit-
ly stated as follows:

A=A, Mi=M'("),

A =A=N0), Mi=M;=M>(»),
Af=MF=0, fori#k;
A'=A'B'+B'M"' +h'(H),

A2 =A'B*4+ B*M' +h2(p),
G=AJ+JIM?+g("),

where the ', 42, and g are arbitrary gl(N,C)-valued func-
tions.

Appropriate substitutions into Egs. (2.8) will now give
expressions for 4 ‘and G, which can be substituted back into
Eqgs. (2.7). By using previous results, the coefficients b ¥ can
be eliminated in favor of other quantities, while certain re-
placements can also be made with regard to the A¥ and M X,
The result is a set of equalities between some kind of general-
ized “polynomial” expressions in the variables B !, B2 and J,
with y*-dependent coefficients. The “constant” term in such
a “polynomial” is a matrix function F(3*), while the other
terms are of the following kinds: ¢B*, ¢/, ¢JB*, QB*, B* Q,
QJ, JQ, QJB*, JQB*, and JB*Q, where ¢(3**) is a scalar
function and Q(y*) is a gl(N,C)-valued function. Equating
coefficients of similar terms we obtain a set of partial differ-
ential and algebraic equations, which are not hard to solve.
In particular, we find

—Al-—__-M]:MZEM(y’z)’ AZEA(P;E),
h'rz)y=M,, h*(pz)=M, g(O")=0.

C. J. Papachristou and B. K. Harrison 1262



Equations (2.11) give the complete solution for the compo-
nents of the isovector field V:

D'=c,y+kz+a, D’=k,y+cz+a,
D3 = (¢, — ) — k,Z + s,

D*= —k 7+ (c,—c)Z+ay,,

A'= —¢B'—k,B>— [M(yz),B'] + M,
A= —kB'—c,B*>— [M(y,2),B*] + M,,
G=€(y2)J+ A2 +IM(y.2),

where ¢, ¢,, kK, ks, ¢, ..., @4 are nine complex parameters,
€(y.z) is a scalar function, and M(y,z) and A(y,Z) are
gl(NV,C)-valued functions. From Egs. (2.11) we can read off
the infinitesimal operators P, corresponding to the nine
complex parameters (cf. Ref. 1) and we can show that they
form the basis of a Lie algebra. In particular, the operators

(2.11)

p, 0
1 8y"
and
Pc,+Pc, =yﬂa _Bk a
? ) dB*

represent translations and dilatations, respectively.

Following the discussion in Ref. 1, from Eq. (2.11) we
can construct the foillowing infinitesimal internal symmetry
transformations:

B llzBl + [M(y,Z),B l] _My’
B21z32+ [M(y’z)’Bz] _Mz!
J' =J—e(Fz2)J— A,z —JIM(p,2),

where the €, M, and A are infinitesimal. The corresponding
finite transformations are

B"=UB'U~'+U3,U"",

(2.12)

BY=UB*U~"'+U3,U ", (2.13)
J' =BUJU,
where

U(y,z) =exp{ — M(y.2)},

U(p2) =expl — AGD},
and

Bz) =exp{ —e(.2)}.

These are, of course, familiar symmetries of the SDYM
system.

lIl. PARAMETRIC INFINITESIMAL TRANSFORMATION
AND LINEAR SYSTEM

If we define a new function
§zp2)=M(yz) +e(F2)1y, (3.1)

where 1, denotes the N-dimensional unit matrix, then the
infinitesimal transformations of Eq. (2.12) with A(3,Z) =0
can be rewritten as

6B1= [é-(yﬂ)’-Bl] _§ya
(SBZ = [§(yu),BZ] _é-za 5']: _Jg(yu)’
where 5B*~B* — B* and 6J~J' — J. We wish to rewrite

(3.2)
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these symmetries without the restriction (3.1). It turns out
that this is possible due to the independence of the coordi-
nates of the underlying jetlike space. Of course, there is a
price to be paid for such an adjustment. But this “price” isa
most welcome one: Restriction (3.1) is replaced by a set of
linear PDE’s which, in the case of actual SDYM fields, lead
to a linear system for the SDYM equation.
From Eq. (3.1) it is seen that £()*) satisfies the PDE,

[&5.B 1] + [§7,B2] —&5 —62=0.
Given the independence of the y* and the B * (this is the case
as long as no restriction on the solution manifold is im-
posed), the above equation may be written as

([&EB'] —£&,) +0;([£B%] —&,) =0. (3.3)
This is satisfied if there exists a “potential” ¢(3*,B *) such
that

[&B'] —&, =AY, [EB?]—&, = —Ay;,  (3.4)
where A is an arbitrary complex parameter. We thus replace
the system of Egs. (3.1) and (3.2) by the following alternate
one:

SB'=Ay,, OB = —Ay,, 8J= —JEQGM), (3.5)

where ¥ and £ satisfy the linear system (3.4). Note that Eqgs.
(3.4) and (3.5) become independent of Egs. (3.1) and (3.2)
upon restriction to the solution manifold, i.e., for actual
SDYM fields.

Let us explore further the significance of Eqgs. (3.4) for
actual SDYM fields (in which case the B* are dependent
upon the y*). In particular, let us examine the ansatz

Y =£07), all p:

[6.B']1 —§, =4, [£B?]—§ = —4&. (3.6)
The integrability criterion £, — &5 =0 yields Eq. (3.3),
which, in combination with Eq. (3.6), gives

[£B2—B.+[B'B’] +A(B; +B})]=0.

We seek conditions for B! and B? in order that the above

equality holds for all A and independently of £. The following
pair of PDE’s must therefore be satisfied:

3,B2—3,B'+ [B',B*] =0,
d;B' +03;B>=0.

(3.7)
(3.8)

Equation (3.7) is a condition for zero curvature and implies
that the B ' and B ? are pure gauges:

B'=J"'9,J, B*=J"'3,J, (3.9

where J is a nonsingular gl(N,C) matrix. Then Eq. (3.8)
becomes identical to the SDYM equation (2.1), of which
Eq. (3.6) is seen to be a linear system.

We remark that our results are in agreement with those
of Ref. 5 (although they are given in a slightly different
form). The thing to notice is that these results were actually
derived here, in a rather straightforward manner, by using
the isovector technique.

IV. CONNECTION WITH BACKLUND
TRANSFORMATIONS

By using the original definitions of B ' and B * as given in
Eqgs. (2.3), the infinitesimal transformations of these quanti-
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ties may be written, according to Egs. (3.5) as
J' T I, = A, (4.1a)
J' T —T T, = — Ay (4.1b)

Clearly, as J' approaches J, the #; and #; must approach
zero. One way to achieve this is to put

y=£=1-J"J" (4.2)
Now, if the left-hand sides of Eqs. (4.1a) and (4.1b) are
considered as finite, rather than infinitesimal differences,
then Egs. (4.1) and (4.2) constitute one possible form of the
Bécklund transformation (BT) proposed in Ref. 7. Alterna-
tively, the infinitesimal parametric transformation (4.1)
and (4.2) is also an infinitesimal BT. This was observed in
Ref. 5, but we include it in the present discussion due to its
direct (and quite interesting) relevance to the isovector
method.

Incidentally, the transformation (3.1) and (3.2) is also
an infinitesimal BT, with Eq. (3.1) being a sort of algebraic
constraint. Indeed, putting £ = 1 — J ~'J’ and introducing
an arbitrary complex parameter p, we write

T =T =u{ [T 7Y, =8, U )

. (4.3a)

J I, =p{[J T, ] 3. TN},
(4.3b)
J U =M©u,z) +e(F )1y, (4.3¢)

where M (y,z) is gl(N,C) valued and €(3,Z) is a scalar. Tak-
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ing d;(4.3a) + J; (4.3b) and using (4.3¢c), we find
{8, +8:W' "IN}

—{8,J ) + 3.}

=u[J V() +8:(J )],

according to which J ' satisfies the SDYM equation (2.1) if J
does. Note that the BT was constructed so as to yield the
trivial solution J' = J as a particular solution [this corre-
sponds to M =0 and €=1 in the algebraic constraint
(4.3c)].
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When x, and x, , , represent two random variables, each belonging to a real interval [0,1] and
being related by a first-order difference equation x, , ; = F(x,), called a discrete-time map, the
probability density distribution connected with x, can be translated into that associated with
x, . ;. This yields an evolution equation by means of which one can construct an infinite
sequence {w, (x)|teN, x€[0,1]} starting from an integrable function w,(x) normalized to
unity on [0,1]. The question of the convergence of the sequence toward a so-called invariant
density function w(x) as - + « and the problem of finding this limit were examined by a
number of authors, mostly studying isolated cases. The present paper solves the problem for a
class of discrete-time maps characterized by x, , ; =/f(|sn[/sn~'f "' (x,) ][}, /e{2,3,..},
whereby fis a real, continuous, monotonically increasing function mapping [0,1] onto itself
and sn is the usual symbol for the sinelike Jacobian elliptic function with modulus k€[0,1]
(including the sine function). Convergence is proven under very general conditions on w,(x)
and an explicit formula to calculate w(x) is established. Some properties of w(x) are
discussed. A necessary and sufficient condition for the symmetry of w(x) about x =} is
obtained and attention is also devoted to the inverse problem, ieading to a reformulation of the
discrete-time map of the type cited above which corresponds to a given invariant density. The
examples of practical application considered here cover almost all special cases which were

treated in the literature thus far, as well as new cases.

l. INTRODUCTION

In a number of articles, ™ most of them of recent date,
the evolution of a normalized single-valued real function
(usually a probability density distribution) defined on a fin-
ite real interval toward an invariant limit function under a
given discrete-time mapping has been studied. Let x, and
X, be two continuously varying random variables, each
belonging, for instance, to [0,1] and related to one another
by a first-order difference equation

(1.1

If w, (x,) represents the probability density distribution as-
sociated with x,, so that w, (x, ) |dx, | is the elementary prob-
ability that the random variable takes a value between x, and
x, + dx, (whereby dx, may be either positive or negative),
one can ask for the corresponding elementary probability
W, (x,,,)|dx, | associated with the variable x, , , and
its differential. The expression of w, , ; in terms of w, and F
ultimately leads to a transformation by means of which one
can construct iteratively an infinite sequence of functions
{w, (x)|reN, xe[0,1]} starting from a given initial function
wy(x), with all functions normalized to unity when

1
f we(x)dx = 1.
(o]

x, ., =F(x,).

(1.2)

Thus w,(x) is assumed to stem from a single-valued real
function defined on [0,1], being continuous or maybe only
piecewise continuous, but satisfying conditions such that its
definite integral from 0 to 1 (possibly an improper integral)
be convergent. Then, using a suitable proportionality factor,
normalization to unity may be achieved, giving rise to
wy(x). The question is, does the infinite sequence of w func-
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tions tend to a limit distribution when # - + o0 andif'so, find

lim w,(x), 0O<x<l.
t1— + o
In Ref. 1, one finds the following particular example:
r 2x,, 0<x, <4, (13)
x:+1‘— (xz)_ 2(1—xt), %<xt<1’ .
in which case the limit distribution is
wx)= lim w,(x)=1, 0<x<l. (1.4)

= +

In Ref. 5, it is shown that to the cusp-shaped return map

X1 =1=-2Ix[, —1<x<], (1.5)
by means of which the interval { — 1,1] is mapped onto it-
self, there corresponds as a limit distribution

wx) =4(1—-x), —I<x<l (1.6)

We shall reconsider these examples in Sec. III.

Ulam and von Neumann’s paper’ comprises still an-
other example which has received considerable attention as
of late. Under the discrete-time quadratic map (a special
case of the so-called logistic map),

(1.7)
of the interval [0,1] onto itself, any normalizable initial
function wy(x) leads to the invariant density

w(x) = 1/7[x(1 —=x)]"?, 0<x<1. (1.8)

Indeed, Falk® has calculated the general element w, (x) of
the sequence {w, (x)|?€N, xe[0,1]} generated under (1.7)
starting from the uniform distribution wy(x) =1 and ob-
tained (1.8) by direct transition to the limit. Falk notes that

x, ., =4x,(1—x,),
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the symmetry of w,(x) about x =} is broken at ¢ = 1,2,3,...
and returns only in the limit # = + . Nandakumaran’ has
extended Falk’s results to all probability density distribu-
tions of the form

wo(x) = [x"(1 —=x)"]/[B(n+ Ln + D],

0<x«l,

neN,

in particular confirming (1.8). Very recently, Grosjean®®

generalized Nandakumaran’s work to a broad class of initial
functions, normalized to unity but not necessarily positive-
semidefinite, first under the quadratic mapping (1.7) and
later under the polynomial discrete-time maps of any degree
which generalize (1.7). Such mappings are first-order differ-
ence equations of the form

X1 =pi(x,), {34,.1} (1.9)

in which p, represents a real polynomial of degree / and are
uniquely defined by the following requirements.

(1) For every x,€[0,1], the corresponding x, , , also
belongs to [0,1] where, in particular, x, =0 entails
Xepn = 0.

(2) To every x,, ,€]0,1], there correspond / distinct
real values of x, belonging to ]0,1[.

In this way, the explicit expression of (1.9), with (1.7) in-
cluded, is

Xewt :sz%_J (\ll - X, ) s 16{2,3,...}, (1.10)

where U symbolizes a Chebyshev polynomial of the second
kind, or in parametric form,

x, = (sin@)? x,, , = (sinlf)? 0<6<7/2,
le{2,3,...}. (1.11)

Thinking of initial functions which can possibly be only
piecewise continuous by the appearance of a number of finite
jumpsin [0,1], Grosjean®® proposed to represent w,(x) by a
convergent series of the type

aO + oo
wolx) =7+ Y [a.T,, (1 —2x)

n=1

+2b,x'?(1 —x)'?U,, _,(1—-2x)], (1.12)

deduced from the Fourier series
+ oo
% + Z (a, cos 4nb + b, sin 4nf), 0<O<7/2,
n=1
(1.13)

by means of the substitution x = (sin #)? and normalized to
unity [see (1.2)] when

aQ T a,

Lo _ L —— | 1.14

2 n=1 4}12 — 1 ( )
Grosjean®®  established the following (provisional)
theorem.

If in [0,1] the initial function wy(x) is the sum of a
convergent series of the type (1.12) whereby the a coeffi-
cients satisfy (1.14) as well as the condition

Mﬁ- 5 la,|: conver

5 wlt gent,
n=1
then under any polynomial discrete-time map comprised in
(1.10), the sequence {w, (x)|teN, x€[0,1]} converges to-

(1.15)
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ward the limit function
w(x) = /m[x(1 —x)]"?

Asin Refs. 6 and 7, the method used consisted of calculating
w, (x) explicitly for any teN,, and letting ¢ approach infinity.
But in the final step of the proof, in the case that the “a part”
in (1.12) involves infinitely many terms, there is need for
uniform convergence with respect to ¢ and thus (1.15) is
required as a sufficient condition. Unfortunately, when
(1.15) holds, it deprives the part of w,(x) which is sym-
metric about x =1 of the possibility of exhibiting finite
jumps between 0 and 1, on account of the criterion of Weier-
strass for the absolute and uniform convergence of the “a
part” in a series expansion such as (1.13) and a fortiori
(1.12). In a subsequent note, Barbour'® succeeded in elimi-
nating this drawback.

The purpose of the present paper is twofold: We wish to
make the conditions imposed upon the initial function w,(x)
much less restrictive and extend the theory to a much wider
class of discrete-time maps [ rational and irrational functions
Fin (1.1)]. The proof of the convergence of the sequence
{w, (x)|teN, x€[0,1]} toward a limit density w(x) as
t— + oo and finding this density will be based upon a proce-
dure differing entirely from the methods applied in the var-
ious articles cited in this Introduction, including my own
articles.®®

O<x«l.

. THEORETICAL DEVELOPMENT

The parametric transformation x, = (sin 6)? applied to
the logistic map (1.7) is implicit in most studies of the map.
As was shown in Sec. I, it has led me to the polynomial
generalization of arbitrary degree (1.10) via (1.11). As a
next step, inspired by the parametric representation (1.11),
one can consider the much broader generalization

0<0<7/2,
(2.1)

x, = f(sin 8),
1{2,3,...},

x, .1 =f(|sini8}),

where f(») is a single-valued, real, continuous function of y
defined on [0,1], having a continuous or piecewise contin-
uous derivative in that interval and increasing monotonical-
ly (sensu stricto) from O to 1 as y increases from O to 1. The
inverse function, which as a function of ye[0,1] we denote by
f£7Y(p), is endowed with the same properties and therefore
the discrete-time map corresponding to the propounded par-
ametric representation (2.1) is

x, 1 =f(sin[/arcsin f~'(x,)]]), O<x,<I,

le{2,3,...}. (2.2)

But, the sine function is known to be a special case comprised
in the Jacobian elliptic sn function. Although one en-
counters the Jacobian elliptic functions much less frequently
than the circular functions in practice, another degree of
generality is gained when (2.1) is replaced by

x, =flsn(w,k)), x,., =f(|sn(luk)]),
le{2,3,...},

0<u<K k),
2.3)

where the modulus £€[0,1[ and K (k) is the complete elliptic
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integral of the first kind, i.e,,

1
dx

K(k) J(; (l—-xz)l/z(l—kzxz)l/z ’

whose value is real, finite, and greater than 7/2 for k€]0,1[.
In the special case & = 0, the Jacobian elliptic functions re-
duce to circular functions. From here onward, the modulus
will not be written explicitly as an argument of the sn func-
tion and the complete elliptic integral except where it is de-
sirable to include it in the notation. The counterpart of (2.2)
is

x, .y =f(sn[lsn™' 7 (x,)]]), O<x,<1, [{23,.},
(2.4)

with sn ! the usual symbol for the inverse of the Jacobian sn
function, defined on [0,1] by

—1 Jw dx
sn V= (1 .
? (2.5)

_ x2 ) 1/2 ( 1
Here, (2.4) is the definitive form of the discrete-time map-
pings upon which the remaining calculations in the present
article will be based. It is sufficiently general to include a
variety of interesting special cases, but it is not yet the most
general form which can be considered.
Note that the formulas (2.2) and (2.4), each one con-
necting x, and x, , ,, are closely related to the relevant con-
cept of conjugate functions, i.e.,

b(x)y=h{alh ~'(x)]),

which has played an important role in a number of articles.
One finds it, for instance, in articles by Halmos!! and by
Ulam,'? and it was discussed by Grossmann and Thomae as
well.’3 Also, Gyorgyi and Szépfalusy'* made extensive use of
the concept of conjugation to determine invariant measures
for various one-dimensional maps. In the important special
case of / = 2, the absolute value stripes may be deleted in
(2.2) and (2.4) under the assumptions made for the func-
tion f(y)in (2.1).Ifa conjugating function 4 (y) is such that
al f(y)]isstill asingle-valued, real, continuous function of y
on [0,1], having a continuous or piecewise continuous deriv-
ative in that interval and increasing monotonically (sensu
stricto) from O to 1 as y increases from O to 1, then one can
associate with (2.2), where one puts / = 2, the discrete-time
map

x, ., = hf(sin[2arcsinf~'h " '(x,)]); (2.2

the analysis which will follow is also applicable to this map,
with the function operator fsimply replaced by Af. Asis wellJ

O<r«l

’
— k)2

known, the invariant densities corresponding to the two con-
jugate dynamical laws (2.2) with/ = 2 and (2.2") are closely
related, which will be confirmed by the final result for w(x).
The same remark holds for the two conjugate dynamical
laws (2.4) with / =2 and

X,y =hf(sn[2sn™' AT (x,)]). 2.4)

To every x,€[0,1], there corresponds one real value of
x, . and it also belongs to [0,1]. But, conversely, to every
x,, 1€]0,1[, there correspond / distinct real values of x, in
the interval [0,1], i.e.,
xV=r(x1)
=f[sn{(1/Dsn™' f71 (X, . N s
xP =ry(x,4 1)

=f[sn((2K /1) — (1/Dsn~"' f7 (%, ))]

=r3(x, 1)

=f[sn(Q2K /D) + (1/Dsn™' £~ (%, )],

xt(J)

(2.6)

xP =r(x, ) =fIsn(2[I/2]K /D)
—(=D'A/DHsn~' 7 x, . ))]S

with [/ /2] the largest integer smaller than or equal to / /2.
These expressions remain valid as x,, -0 and x, | >
from inside [0,1]. From them, one easily deduces that
x,,, =0givesrise tox{¥ =0, x® = x>, x* = x, etc.,
whereas x, , | = 1 yields x{" = x?, x* = x*, and so on.
In these cases, the number of distinct real x, values is re-
duced to either [/ /2] or [//2] + 1. As stated in the Intro-
duction, the transformation leading from w, (x) tow, | | (x)
stems from probability theory. If w, (x, ) |dx, | represents the
elementary probability that the random variable at the in-
teger time instant ¢ take on a value between x, and x, + dx,
(where dx, can be either positive or negative), then we have,
for the analogous elementary probability regarding the ran-
dom variable at the time instant ¢ + 1,
!

3w, (x{™)]dx™|

m=1

wt+1(xt+1)‘dx1+l|

!

S wilrm, (x4 A7, (x4 D)

m=1
Dividing by |dx, , , | and dropping the subscriptinx, , ;, we
obtain the evolution equation yielding w, , , (x) in terms of
w,(x):

df ~'(x)/dx [ v, v ,( v) [ ( v)]
= ZdnZ = w, hd
w'+1(x) 1[1_(f—l(x))2]1/2[1_kZ(f—l(x))Z]IIZ Cnl nlf snl w f snl
+cn2K—vdn2K—vf,(sn2K—v)wt[f(sn2K—v)]
I / ! /
+cn2K+vdn2K+vf'(sn2K+v)w,[f(sn2K+U)]-+—~'-
) / ) )
' I ’ 1 ' - I ' _ _ 1
+Cn21K_l(_1)Udn21K_l(_l)vf'(SHZIK_l( l)u)w,[f(SHZIK l( l)v)”’ VieN,
2.7)
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inwhichv =sn~! f~'(x),!/’ = [/ /2],and cn,dnare the two
well-known cosinelike Jacobian elliptic functions associated
with the sn function. This being by definition the evolution
equation connecting any two neighboring functions in the
sequence {w, (x)|t€N, xe[0,1]}, it is not required after all
that the w functions on which (2.7) is applied be positive
semidefinite on [0,1].

When (2.7) is used to transform a given initial function
wy(x) into w,(x), we obtain

df ~'(x)/dx
I — ()PP — k21 (x))P]Y?

Xz cnudnuf' (snw)wyl fsnu)], (2.8)

w(x) =

in which the summation with respect to # runs over the val-
ues
v 2K—v 2K+ 'K —(—=Dh
l bl l b l ey l b
wherev =sn™"' £ ~'(x). Theseare/ distinctreal values when
x€]0,1[, one in each of the open real intervals
Im(K/D),(m+ 1)(K/D[, Vme{0,1,..,]— 1}

When x -0 or x— 1 from inside [0,1], adjacent pairs of val-
ues in (2.9) converge to each other since v—0 or v— XK, re-
spectively. The peculiarity of the evolution equation (2.7) is
that when it is applied a second time in order to express
w,(x) in terms of w,(x), one obtains

df ' (x)/dx
12[1 _ (f_l(x))z]”z[l _ kZ(f—l(x))2]1/2

(2.10)

2.9)

wy(x) =

Xz cnudnuf (snu)wy[ f(snu)],

where the summation with respect to ¥ now runs over the
values

v 2K—v 2K +v 20K — (— DY
1_2’ [2 ’ 12 peery 12 ’
2—INK+ (=Dl 24*—1 ,
yeees K —1
B YE =+ ( )
X(z-ll%——l%), with v=sn"!f " !(x), (2.11)

which result from the replacement of v successively in each
member of the sequence (2.9) by the entire set of / values
contained in (2.9). When xe]0,1[, this procedure yields />
distinct real values, one belonging to each of the open real
intervals

Im&K /1%, (m+ 1)K /1%, ¥Yme{0,1,..0%— 1}.

The complete verification of the results (2.10) and (2.11)
would require a considerable amount of space; therefore, it is
Ieft to the reader. Only as an illustrative example of how the
combinations of arguments simplify, let us calculate the ar-
gument with which the function w,, appears in the first term
of the sum in (2.10). To do this, (2.7) is applied for ¢ = 1;
hence we find in the first term, among other factors,

wi [ flsn(sn™' fTH(x) /1T,

and according to (2.8), the argument of this w, function
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should replace x in

wol flsn{sn™ '~ 1(x)/IN] .
This yields

wel fIsn(1/D{sn=" f ' fsnfsn ™" £~ (x)/IN N1},
which clearly reduces to

wol flsn(sn™' fF~1(x)/I*)] .

In the same manner, after ¢ applications of Eq. (2.7), it
follows that

df ~'(x)/dx
lt[l _ (f—l(x))Z]l/Z[l _ kZ(f—l(x))Z]l/Z

(2.12)

w,(x) =

X enudnuf’(sn wwel flsnu)],

in which, when x€]0,1[, the summation with respect to u
runs over /[ distinct real values resulting from repeated ap-
plication of the rule described above:

v 2K—v 2K +v 21’—1K
[ T T I
K v
+ —w(———),
( 21t It

stillwithv = sn~'f ~!(x). When the interval [0,K ] is subdi-
vided into /  equal subintervals, one finds inside each of these
subintervals one  value taking part in the summation ap-
pearing in (2.12). Consequently, when x€]0,1[, the expres-
sion
, K
ch(u)dn(u)f (sn u)w,[ f(sn u)]XF (2.13)
recalls the way in which a Riemann definite integral is de-
fined. Indeed, the real interval [0,K] over which « can vary
is subdivided into /‘ equal subintervals playing the role of
Au, and inside each of these intervals is located one abscissa
at which the value of the integrand is taken. With regard to
wg(x), the simplest possible case is that this normalized ini-
tial function is continuous in [0,1]. Then, it is immediately
clear that for x€]0,1[ the sequence {w, (x) |teN} converges
toward the following limit as 1 — + oo

df ~'(x)/dx
K [1 _ (f—l(x))2]l/2[1 _kZ(f—l(x))Z]l/Z

Xf cnu dn uf’'(sn u)w,| f(snu)ldu.
(4]

(2.14)
But,

K
f cnudnuf'(snu)wy| f(snu)ldu
0
1
= [ ront sy
0

1
=f wy(x)dx =1
(0]

in virtue of the normalization of wy(x), and hence
{w, (x) |teN} approaches

B df =" (x)/dx
w(x) = K [1 . (f»l(x))Z]l/Z[l _kZ(f—l(x))Z]l/Z :
(2.15)
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When x =0, the u values over which the summation in
(2.12) runs are zero and all integer multiples of 2K /I’
smaller than or equal to K, because, as onelets x — + 0, all or
almost all pairs of adjacent u values from the second u value
onward tend to a common limit. When / is even, one can
subdivide [0, K] as follows:

[0,K /1*] associated with u =0,

[2m —1)(K/1"),2m + 1)(K/1)]
associated with u =2mK /I,
¥Yme{1,2,...,(1' — 2)/2},

[(1—-1/I)K,K ] associated with u =K.

Here, every u value between 0 and X is located in the middle
of a segment of length 2K //°. The sum appearing in (2.12)

becomes
=2y

2[%f’(0)w0(0)+ S cn 2mK g, 2mK

R TERT
T Joup (255 )

+%(1 — k)2 [cn uf'(sn u)]u=Kwo(1)} ,

and with wy(x) still assumed to be continuous in [0,1], this
expression, when multiplied by K /I, again converges to-
ward the Riemann definite integral appearing in (2.14)
when t—> + «. Hence, when /is even, (2.15) remains valid
in the limit x = 0. A similar reasoning can be formulated
when /is odd, and after that also for x = 1. Therefore, (2.15)
holds good for all x€[0,1] under the assumption that the
initial function wgy(x) is continuous in the interval [0,1].

Our argument can easily be extended to other cases,
where the given initial function w,(x) involves discontinui-
ties in [0,1]. When w,(x) is piecewise continuous, having a
limited number of finite jumps in [0,1], there corresponds to
every abscissa where such a jump occurs a u value belonging
to [0,K], obtained by the transformation ¥ = sn™' £ ~'(x).
These u values subdivide [0,K] into a finite number of subin-
tervals in each of which w,[ f(sn #) ] is continuous, and for
sufficiently large ¢, when xe€]0,1[, every one of these subin-
tervals is itself subdivided into a number of segments of equal
length X /I, except perhaps near the boundary points. Let-
ting - + o0, the above reasoning can be applied to each of
the subintervals; thus one obtains, instead of one Riemann
integral like the one in (2.14), a finite sum of Riemann inte-
grals whose intervals of integration are strung together to
form [0,K]. This sum of Riemann integrals defines the value
of

1
J wo(x)dx
(4]

in the considered case and is therefore equal to unity in virtue
of the normalization. Once more, this argument can be ex-
tended without difficulty to x = 0 and x = 1. Consequently,
(2.15) remains valid when w,(x) is piecewise continuous,
exhibiting a limited number of finite jumps in [0,1]. Analo-
gous considerations also hold in cases where there occur
stronger singularities of wy(x) in [0,1], making (2.16) an
improper integral on the condition, however, that the inte-
gral be convergent so that w,(x) is normalizable in the strict

X f’(sn

(2.16)
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sense. An example of such a case is
wo(x) = 1/(2|1 — 2x]'/?), 0<x<1. (2.17)

Here, use can be made of suitable cutoffs and one can show
that w, (x), as given by (2.12), converges toward the right-
hand side of (2.15), multiplied by the definition of (2.16) as
a convergent improper integral; thus, e.g., in the case of
(2.17),

1 j-e
. 1 (? dx
wy(x)dx = lim — S
J; o) =402 Jo  (1—2x)'2
! dx 1
bhe 2x—DYV2 T

In conclusion, the following theorem can be stated.

Under a discrete-time mapping of the type (2.4) with
ke[0,1[, subjecting iteratively to the associated transforma-
tion (2.7), a single-valued, real, continuous, or piecewise
continuous function wgy(x), defined on [0,1] and normal-
ized to unity, where

+ lim -

€40 2

1
J wo(x)dx
0

may be an improper, yet convergent integral on account of
the singularities of w,(x) in [0,1], leads to an infinite se-
quence of functions {w, (x) |z€N, xe[0,1]} which converges
toward a limit function w(x) when - 4 o, with

df“‘(x)/dx
KK — (7 0PI — k301>
O<x«l. (2.18)

w(x) =

Note that the limit function is independent of the integer
parameter / appearing in (2.4), but fully determined by the
modulus k& and the inverse of the function fappearing in the
parametric representation (2.3). For k = 0, which means
using (2.1) and (2.2), (2.18) reduces to

wix) = 2df Y (x)/dx ’

m[1— (7 )12
Since (2.7) conserves normalization, w(x) given by (2.18)
or by (2.19) is also normalized to unity, as can be verified by
inspection.

In regard to the preceding theorem, let me emphasize
that the initial function w,(x) must no longer be continuous
on [0,1] in order to ensure convergence of the sequence
{w, (x)|teN, xe[0,1]} toward the limit (2.18), in contrast to
the continuity imposed on w,(x) by the sufficient condition
(1.15) which was part of the theorems comprised in my
earlier articles.®® In those theorems, leaving out the condi-
tion (1.15) would not exclude the possibility of convergence
toward the limit function 7~ '[x(1 — x)]~ /2, but conver-
gence would be unproved when w,(x) involves singularities
in [0,1] within the framework of my earlier proofs. The pres-
ent analysis clearly removes this drawback. It shows that in
virtue of the more powerful method used in the present arti-
cle, condition (1.15) can be deleted after all, in agreement
with Barbour’s result'? in the case of finite jumps of w,(x) in
[0,1].

Reconsidering the two conjugate dynamical laws (2.2)

O<x<1. (2.19)
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with / =2 and (2.2') where the conjugating function 4 is
such that both fand Af have the properties required in the
beginning of this section, we clearly have as a relation
between the corresponding invariant densities w(x) and
w(x;h),

dh ~1(x)

dx ’

a relation which remains valid for (2.4) with /=2 and
(2.4’). The examples given in Ref. 12 (cf. Sec. IV and Figs. 2
and 3) are comprised in the present theory. Indeed, the dif-
ferent conjugating functions #(8) which are coupled with
the special case called ¥V,(8) have the properties specified in

the beginning of our Sec. II; therefore this is also the case
with [ f(y)]. Here, N,(8) is such that

X4 =N2(xt)

w(x;h) =wlh ~'(x)]

is nothing but the dynamical law (1.3). Asis shown in exam-
ple (5) of Sec. I1I, this map is included in (2.2), where one
puts / = 2 and the functions which I called f(y) and f ~'(y)
are

fO) = (2/m)arcsiny, f~'(p) =sin(wy/2),

In certain applications, as we shall see in Sec. III, w(x)
turns out to be symmetric about x = . This is not necessarily
a consequence of symmetry about x, =1 in the right-hand
side of a discrete-time map written in the form (1.1). Let us,
for instance, recall the case of the quadratic map (1.7)
where, as was pointed out by Falk,® w,(x) = 1 gives rise to
the asymmetric functions w, (x), ¢ = 1,2,..., despite the sym-
metry of the right-hand side in (1.7). However, the symme-
try about x = is restored in the limit function w(x) given by
(1.8). In the case of / = 3 in (1.10), being the cubic map

(2.20)

which does not have the symmetry about x, = 1, starting
from either a symmetric or an asymmetric initial function
wy(x) leads, at any rate, to (1.8), having the symmetry. On
the contrary, when one maps linearly [ — 1,1] onto [0,1]
both for x, and x, , ; in (1.5), so as to obtain

0<y<1.

X, =% (3—4x)% 0<x<],

(2.21)

which is, of course, also cusp shaped with the singular point
at x, =}, the discrete-time map is symmetric about that
point. The evolution corresponding to (2.21) is

w,, (x) =1 —x)[w(x—x*/2) +w,(1 —x +x*/2)],

Xit1 =1- il_‘zxtlln’ 0<xt<1’

O<x<1.

Starting from the normalized uniform distribution
wy(x) = 1 which also has the symmetry, one finds, strangely
enough,

w,(x)=2(1-x), VeeN, 0<x<l,
and hence
w(x) = lim w,(x) =2(1 —x), (2.22)

I~ +

which is the invariant density, no matter from which initial
distribution one starts since it is, under the requirement of
normalization to unity, the unique solution of

wx) = (1 —x)[w(x —x*/2) +w(l —x +x¥/2)],

0<x«1,
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according to Hemmer.’ Yet, it does not possess the symme-
try about x = J. Irrespective of these examples, the explicit
form of w(x), namely (2.18), associated with a discrete-
time map of the type (2.4), enables us to find a necessary and
sufficient condition that w(x) be symmetric about x = 4.
Indeed, if w(x) = w(1 — x), ¥xe[0,1], then

y 1
fw(x)dx=f w(x')dx', Vye[0,1],
T—y

(o]
or

sn”'f' () =K(k) —snT' fTH (1 —y),
If we put

sn” fTl ) =u,
then

snu=f""(y),
But

sn[K(k) —u] = (cnu)/(dnu),

and therefore, we find as a necessary and sufficient condition
for symmetry,

f“(l—x)=(

Vye[0,1].
O<u<K(k),

sn[K(k) —ul =f "Y1 —yp).

- (fT'x)°
1 _kZ(f—l(x))z

172
) . Vxe[0,1],
(2.23)

in which we returned to x as the independent variable. If one
keeps in mind that f ~'(x) increases steadily from Oto 1 as x
increases from O to 1, (2.23) can be rewritten rationally as

(fT' A=) =[1— ("2 =k )]
(2.24)

For k = 0, which corresponds to (2.2), the condition is

(ST OP+ T A =0P =1 (2.25)
Expressed in terms of fitself, (2.23) becomes
f) + =33/ -k%h)) =1,
vxe[0,1], ke[0,1], (2.26)
with, as a special case for k =0,
fx)+f(J1=x%) =1, V¥xe[0,1]. (2.27)

Examples of solutions of Eq. (2.27) which increase steadily
from O to 1 as x increases from O to 1, are

flx) =x

They will be brought in relation with certain special cases
comprised in Sec. III. Note that in regard to possible symme-
try of w(x) about x = 1, the integer parameter /in (2.2) or
(2.4) is totally unimportant.

The explicit formula (2.18) enables us to discuss some
characteristic features of the limit function w(x). In virtue
of the properties f(x) is assumed to have for x€[0,1], we
have

df '(x)
———">0
dx
entailing that

and f(x) = (2/m)arcsin x. (2.28)

1

w(x)>0, 0<x«], (2.29)

irrespective of whether the initial function w,(x) is positive
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semidefinite or not. Furthermore, if

df ~'(x) )

( dx x=1 >0
which means 0<f'(1) < + o, then one certainly has
w(1) = + co.Ifat the same time f ~ ! (x) satisfies (2.24) or
(2.25), one obviously also has w(0) = + oo in virtue of the
symmetry of w(x) about x = 1. When x€[0,1[, the denomi-
nators in {2.18) and (2.19) are finite and positive. To any
abscissa a€[0,1[, where f'(a) happens to be zero,
there corresponds w(B)= + o on account of
(df ~'(x)/dx),_ g = + o, with 8= f(a)€[0,1[. This can
solely occur at isolated abscissas . Furthermore, also for
x€[0,1[, the equality sign in (2.29) can only hold at points
where df ~!(x)/dx = 0, which is associated with f’(x) be-
coming infinite. Thus if f(x) is a function with a continuous
derivativein [0,1[, then w(x) > 0,x€[0,1[. It could happen,
however, that f'(x) is only piecewise continuous in [0,1[.
Then, for an abscissa xk€[0,1[, where /' (k) = + o, there
comes w(A) = 0 on account of (df ~'(x)/dx),_ ; = 0, with
A = f(x). This can occur solely at isolated abscissas A be-
cause f(x) is assumed to be single valued. It could also hap-
pen, still when f”(x) is only piecewise continuous in [0,1[,
that f'(x) is double valued at one or several abscissas g,
which would mean that f(x) has a left derivative and a right
derivative, unequal at such an abscissa. Then df ~'(x)/dx
and therefore w(x) are also double valued at x=v,
v = f(u), with the discontinuity a finite or an infinite jump.

The particular form of the right-hand side in (2.18)
makes it possible to establish a way to solve the inverse prob-
lem: Given a positive-semidefinite invariant density, find the
discrete-time maps of the type (2.4) or (2.2) from which it
originates. Indeed, integrating on both sides between O and y
in (2.18), one obtains

” 1
f w(x)dx =
o K(k)

in virtue of (2.5), and therefore

sn~' (), O<y«],

"y
f“(y)=sn(K(k)f w(x)dx), o<y, (2.30)
0

Then fclearly follows from the inversion of £ ~*. This proce-
dure will be applied in two of the examples considered in Sec.
III. Equation (2.30) even permits the discrete-time map
(2.4), which yields w(x), to be rewritten solely in terms of

w(x):
sn(K(k) JXHI w(x)dx) == sn(lK(k) fx' w(x)dx)
(0] 0
1{2,3,...}, ke[0,1].

0<x, <1,
(2.31)

In the special case k = 0, the corresponding formulas are

f7lon = sin( % Jyw(x)dx) ,
0

sin(lfx’+l w(x)dx) = sin(l—ﬁf ,w(x)dx)‘ .
2 Jo 2 Jo

(2.33)

Expressed in this manner, a discrete-time map is in an im-

»

0<x,, <1,

(2.32)
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plicit form, i.e., solved neither with respect to x, , ; nor with
respect to x,.

HIl. SOME EXAMPLES OF PRACTICAL APPLICATION
(1) In the case of a polynomial discrete-time map as
described by (1.10) or (1.11), we have & = 0 and f(x) = x*
with x€[0,1]. Hence, K = 7/2 and f ~'(x) = J/x, and con-
sequently there is convergence of {w, (x)|t€N} toward
2d\x/dx _ 1
7(1—x)"?  #lx(1—x)1"?"

0<x«l,
(3.1)

which confirms the result (1.8) obtained by several authors
in the special case of the quadratic map. On the basis of Sec.
II, one understands why all the polynomial discrete-time
mappings comprised in (1.10) give rise to the same invariant
density. Since /(1) = 2, thus positive, w(1) = + . Since
£'(0) =0, we have {df ~'(x)/dx),_, = + o and conse-
quently w(0) = + . Because of the continuity of /' (x) in
[0,1], w(x) > O for all x[0,1]. The function f(x) = x*is a
solution of (2.27), which explains the symmetry of (3.1)
about x = 1.

(2) The most direct generalization of (1.11) is

x, = (sn(,k))?, x,,, = (sn(luk)), O<u<K(k),

le{2,3,...}, O<k<l. (3.2)

In this case, the discrete-time map is rational. When/ = 2, it
is

x,H=[4x,(1—x,)(1—k2x,)]/(1—kzx,z)z, (3.3)
being a generalization of the quadratic map (1.7). As ex-
pected, its inverse is expressed by two formulas:

X0 = Gx) = [1- (=%, "]
X[+ (1 =k, )7,

xP=r(x,, )= [1+ _xt+1)l/2]
X1+ (1 =k, )]

Here again, we have f(x) = x%, f~'(x) = Jx, and conse-

quently, irrespective of the value of /€{2,3,...}, the invariant

density associated with (3.2) is

w(x) = 2K (k) [x(1 —x) (1 — k%)Y, O0<k<],
(3.4)

which generalizes (3.1). It is not symmetric about x = } be-

cause x is not a solution of (2.26).

(3) With the discrete-time mapping

w(x) =

Xy =x,|U,_1(\/l——;,2_)| (3.5)
stemming from

x,=sin6, x,,,=|[sinlf|, 0<O<7/2,
there is associated as invariant density,

w(x) =2/[7(1 —x*)"?], 0<x<l, (3.6)

since f(x) = x and f~'(x) = x. As x is not a solution of
(2.27), there is no symmetry about x = }, but on account of
f'(x) =1, which entails df~'(x)/dx=1, Vxe[0,1],
w(x)>0,and w(l) = + «.

(4) Intermediate between f(x) = x? and f(x) = x, we
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can consider
fx) =ex? + (1 —o)x, (3.7)

increasing steadily-from O to 1 as x increases from O to 1
when — 1<c<1. For f~!(x), we find

FUx)=2x/{1 —c+ [(1 —c)* + 4ex]V2}
Putting & = 0, the invariant density corresponding to the
discrete-time mappings
x, =c(sin @)? 4+ (1 —¢)sin 6,
X, =c(sinl8)* + (1 —c¢)|sin 16|,
0<o<m/2, le{2,3,..},

O<x«],

4x?

or
X, =clsin 8U,_ | (cos 8))?
+ (1 —¢)sin @ U, _, (cos )], (3.8)
in which
sin @ =2x,/{1 —c+ [(1—¢)*+4ex, ]'?},
4x2 1/2
cosB:{l— ’2 — 2] ,
{1 —c+[(1—¢)* 4+ 4ex, ] }
is

w(x) = 2[7[(1 —¢)? + 4ex]V?1 —

(5) In Ref. 4, it was stated that the discrete-time map-
ping
{2.x,, 0<x, <
X =
200 =x), 4kxi<

(rewritten in our notation) gives rise to the constant limit
density

1
21 (3.10)

0<x«]1, (3.11)

according to Kac.! It is amusing to verify this result, pro-
ceeding in the backward direction starting from w(x) = 1.
Let us assume that the function called f throughout this arti-
cle exists and let us at first put the modulus k& equal to zero,
for simplicity. Then, according to (2.19), we must have

w(x) =1,

2df ~N(x)/dx
[l — (f71 0y

Integration from O to y on both sides, where ye[0,1], yields

=1, 0<x«l.

(2/m)arcsinf 7' (y) = p,

and so

f) =sin(my/2), O<y<l. (3.12)
In turn, this gives

f(x) = (2/m)arcsin x, 0<x<1, (3.13)

which satisfies the condition (2.27) in virtue of the symme-
try of w(x) = 1 about x = 1. Since f(x) has all the necessary
properties to be inserted into (2.1), we know at once that for
every 1{2,3,...},

x, = (2/m)arcsin(sin 8) = (2/7)6,
0K T/2,

is the parametric representation of a discrete-time mapping
to which there corresponds w(x) = 1. Eliminating 8, the
result is

X, ., = (2/m)arcsin(|sin /6 |),

x, 1 = (2/m)arcsin(|sin(l7x,/2)|), (3.14)

or
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12) —1
{1~C+[(1~6)2+4cx]”2}2] } '

(3.9)
|
Ix,, 0<x, <1/,
2 —Ix,, 1/1<x,<2/1,
2/1<x,<3/1, (3.15)

X,p1=9% —2+Ix,

(—1/2[1/2] = Ix,), (I—1)/I<x,<1.

The case (3.10) is simply that of / = 2. It is somewhat aston-
ishing that repeating the calculations with 0 < £ < 1, hence
with elliptic functions, does not yield a different result com-
pared to what we just obtained. The finiteness of w(x) at
x = 1 implies that (df ~'(x)/dx),_, be equal to zero or,
equivalently, that f'(1) = + «. According to (3.12) and
(3.13), such is indeed the case.

(6) Let us return to the subject of Ref. 5, namely, the
cusp-shaped map (1.5) and the associated limit distribution
(1.6), which, after linear transformation so that both x, and
X, belong to [0,1], give rise to (2.21) and (2.22), respec-
tively. Again, if we assume the existence of fand its inverse
f 7', as well as k = O, we can integrate from 0 to y in (2.19)
with w(x) = 2(1 — x). The result is

2y —y? = (2/m)arcsin f ' (p)

and so
) =sin(my — (7/2)y%), O<y<1.
This, in turn, yields

f(x) =1—(1 — (2/m)arcsinx)'/?, 0<x<1. (3.16)

Here, f(x) and its inverse satisfy all requirements to be uti-
lized for the construction of a discrete-time map of the type
(2.1) and (2.2):

x, =1— [1 — (2/7)arcsin(sin §)]'/?
=1—(1-20/m)"3 (3.17)
X, .1 =1—[1— (2/m)arcsin(|sin /6 |)1'2, 0<O<7/2,
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or
x, .1 =1—A{1— (2/m)arcsin[ [sin Ir(x, — x}/2)|]}'/?,
le{2,3,..}. (3.18)

We know that solving this discrete-time map with respect to
x, results in / real expressions [see (2.6) with k = 0]. Hence,
in order to compare our result to (2.21), namely,

0<x,<1,

X, =1—|1—2x,]"% 0<x,<l1, (3.19)
we have to put / = 2. In this case, we find
x,=1—(1—=20/m)"?
X,,1 =1~ [1— (2/m)arcsin(sin 26)]"/*
=1—|1—460/7"2 0<6<7/2, (3.20)
or
X, =1—|1—4dx, + 222", 0<x,<l. (3.21)

This is a cusp-shaped return map, but it is asymmetric with
respect to x = §, and therefore it differs quantitatively from
(3.19). The Cartesian graph of (3.21) starts at the origin
with slope 2 and increases steadily toward the point
(1 — (y2/2),1), where the slope is + oo . The slope jumps to
— oo as the curve starts to decrease, tending toward (1,0),
where the slope becomes 0. Both under (3.19) and (3.21)
there is convergence of {w,(x)|teN, xe[0,1]} toward
2(1 —x) as t— + oo, but this is not paradoxical. Different
discrete-time maps may give rise to the same invariant den-
sity, as is, for instance, the case with the maps comprised in
(2.2) or (2.4) for [ = 2,3,.... But here, the difference lies
deeper: (3.19) is simply not a discrete-time map of the kind
(2.2). Parametrically, (3.19) can be represented as

x,=20/m, x,,,=1—|1-40/m|'% 0<6<7n/2.
Still making use of f(x) as defined by (3.16), this parametric
representation of (3.19) becomes

x, = 2f(sin 8) — [ f(sin 8)]?,

x,,, =f(sin 28), 0<O<n/2,
confirming our statement made near the beginning of Sec. 11,
namely, that the type of discrete-time maps represented by

(2.4) does not comprise all possible maps. It is practically
certain that to all discrete-time maps with parametric form

x, =2f(sin 8) — [f(sin 0)1%, x,,, =f(|sinl8]),

(3.22)

0<8<7/2, 1:e{2,3,..}, (3.23)
or even more generally,
x, = 2f (sn(uk)) — [ flsn(u,k))]?,
X, 1 =f(sn(lu,k)|), O<u<K(k), [le{2,3,.},
(3.24)

there corresponds a formula to calculate the limit function
w(x), being the counterpart of (2.19) or (2.18), respective-
ly. In the special case of (3.16), this formula, where k =0,
should yield the same result as (2.19), ie., w(x)
=2(1 —x).

(7) In Ref. 13, one finds two examples of piecewise lin-
ear mappings of [0,1] onto itself, symmetric with respect to
x =} and giving rise to limit functions which are piecewise
constant, with a finite jump at x = 1 (cf. Fig. 2 of Ref. 14). 1t
appears of interest to calculate with which discrete-time
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maps of the type (2.2), where / = 2, these limit functions are
associated. Gyorgyi and Szépfalusy'* consider

wix) = l+e O<x<),
1‘-—(,', %<x<1: CG]-—l,l[,
and their first numerical example corresponds toc = — 0.6,
in which case they obtain the symmetric map
5x,, 0<x, <4,
¥+ <X, <bs
X =
T e <y
5(1 —x,), H<x <L

This discrete-time map is not comprised in (2.2) with / = 2,
since the present formalism yields another dynamical law,
nonsymmetric with respect to x, = 1. Indeed, inserting

(x) = [0.4, 0<x <,
Y= e, 1<x<l,
into (2.19) and integrating from O to y, we obtain
. 2y/5, 0<y<}
2/m)arcsin f ~(y) = [ ’
(2/7) ST 8/5—1, J<y<l,
and consequently,
Fi) = {sin(W/S), 0<y<},
Y) = \sin(dmy/s — 37/10), i<y<l.

In turn, this leads to
(5/m)arcsiny, 0<y<sin(7/10) = (/5 — 1)/4,

f» ={ (5 = 1)/a<y<L.

3 + (5/47)arcsin y,

Equation (2.2) with / =2 yields

_ {f(sin(21rx,/5)), O<x, <4,
Yoot = fein{[ (8%, — 3)7]/5}), i<x,<L.

Taking into account the various intervals of validity, we ob-
tain as final result:

(2x,, 0<x, <},

x, /243,  i<x, <,

— 11

xt+l =< 2x1 %s %<x:<T3y
1]9 - 2xn ‘{‘é<xt <'}_g,

L8(1 —xt), {_56<x1<1,

which is a piecewise linear, nonsymmetric discrete-time
map. The absence of symmetry with respect to x, = 4 could
be foreseen since £ ~ ! does not satisfy (2.25) in this case. The
situation is similar to that of our example (6).

In the case ¢ = 0.6, Gyorgyi and Szépfalusy obtain

2 0<x, <3,
Sx, — 3 3<x, <b
Yeer = %_an %<x,<%,
(1 —x,), i<x, <1,

whereas analogous calculations as we carried out above yield
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(2x,, 0<x, <4,
8x, — 3, I<x, <3,
X1 = %-—8)6,, 1i6<xl<%’
i— 2%, §<X <P
(1 —x,), I<x, <L

The calculations may also be worked out for arbitrary
c€] — 1,1 and the result compared to Eq. (3.9) of Ref. 13,
but several subcases have to be distinguished.

(8) Finally, let f(x) be of the form

fix)=a+ (b+b'x)"? 0<x<I1.

This should be a single-valued, real, continuous function of x
on [0,1], increasing steadily from O to 1 as x increases from 0
to 1. Such is the case when

a= —b'2 p'=142b"2 b>0.

Putting b /2 = ¢, we obtain

flx)= —c+ [+ 2c+ Dx?1V?3 0<x<1, >0,
(3.25)

satisfying all requirements and having its derivative function

f'(x) continuous in [0,1]. It constitutes a way of generaliz-
ing f(x) = x, which is the special case ¢ = 0. When ¢ >0,
f(0) =0andf'(1) = (2c¢ + 1)/(c + 1) > 0, and therefore,
w(0) =w(1l) = + o can be expected for any k€[0,1[. Us-
ing the Jacobian sn function, an acceptable discrete-time
map is obtained in parametric form:

x, = —c+ [+ (2c + D(sn(w,k))*]"3,
X1 = — ¢+ [+ Qe+ Disn(w k)12, (3.26)
O<u<K(k),

for every value of / belonging to {2,3,...}. This example is
given in order to show that a function fwhich is still relative-
ly simple may give rise to discrete-time maps of high degree
of complexity, especially as the integer value of / increases.
The simplest map contained in (3.26) is that corresponding
to [ = 2. Its explicit form is

c>0,

+[ 2+4(2C
x,.,=—c+{c
141 [(26‘—{—1)2

+ 1)2)c,(1—x,)(2c+x,)(2c‘-}—1—{—x,)[2c+l—kzx,(20+x,)]}‘/2
— k>x2(2c +x,)?]? .

Even for / = 3, the formula relating x, , , to x, is already considerably more complicated and yet, for any /e{2,3,...}, the
sequence {w, (x)|teN, x€[0,1]} starting from an arbitrary normalized initial w,(x) converges toward

1/2
w(x) (2e+1) " (c+x)

TR —x)(2c+x)(2c + L+ o) [26+ 1 —k2x(2c + )] 172

For ¢ >0, we indeed have w(0) = w(1) = + . For ¢ = 0, wherefore f(x) = x, f'(x) = 1, the singularity at x = O disap-

pears as w(x) reduces to
w(x) ={Kk)[(1—x*)(1
generalizing (3.6).

— k2 V-1,
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A construction is given of the leading, averaged output dependence of a unitary ordered
exponential in the strong coupling limit of rapidly fluctuating input. While valid for any
SU(N), the method does not provide “fine structure” corrections to the leading output
behavior. Numerical illustrations are given using a simple SU(3) example.

I. INTRODUCTION

This paper is meant as a first, and partial generalization
to SU(N) of the techniques and results of two previous pa-
pers"? dealing with the approximation of ordered SU(2)
exponentials in the stochastic limit. Such ordered exponen-
tials (OE’s) are found in almost every field of mathematical
physics which deals with more than one degree of freedom.
Typically, one finds that analytic, continuum calculations
for quantities of physical interest are rendered impossible by
the presence of an OFE, with perturbation expansions remain-
ing the only straightforward method of approach. For strong
coupling (SC) problems, however, that avenue is blocked;
with the exception of machine estimates written for specific
problems, it has not been possible to proceed in any system-
atic way.

The goal of the present approach, for which this paper
is, hopefully, a useful first step, is to exhibit for arbitary NV the
functional dependence of an OE on its input dependence, in
the sense that the expected, rapid fluctuations of the output
in the stochastic regime are suppressed, and only the “aver-
age,” or relatively slowly varying, amplitudes are repro-
duced. (This slowly varying dependence is, however, quite
dependent upon the frequency of the rapid fluctuations.)
Certain technical limitations of the present work restrict the
validity of this analysis, rendering incomplete the “fine
structure” (FS) analysis of the previous papers; neverthe-
less, the construction given below should provide a descrip-
tion of the leading behavior of an OE, as a functional of the
defining input dependence, in the stochastic or rapidly fluc-
tuating limit.

The general OE of interest may be described as the solu-
tion to the differential equation

%ﬁt]— (4E) = A, E, (D U(LE) , (LD
with the initial condition U(0;E) = 1; that is,
UE) = (exp(z‘f dt’ A-E(t’))) R (1.2)
o +

with A, the N? — 1 independent, Hermitian, fundamental
representation matrices (the Gell-Mann matrices) of
SU(N), satisfying the properties
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® Unité Associée 767 au Centre National de la Recherche Scientifique, Phy-
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trfd,] =0, tr[i,4A,] =26, ,
oAy ] = fopch

1
2 abc’tc
%'{/‘La/{b} = (2/N)5ab +dabc/1'c .

The arguments of the OE U(t,E) have been written to
emphasize its functional dependence on the input vector
E,(t'), as well as on the specific # dependence of its output
form. Frequently, the OE’s which appear in various prob-
lems are intended to be used as part of the integrand of a
subsequent functional integration, weighted with an appro-
priate probability distribution. For example, if E, ()

=g*v, (1)*A,*4,,%(x — f5 dt' v(¢t')), where 47, is a gauge
field and the four-velocity v, () isrepresented by dx,, (¢)/dt,
the trace of the corresponding OE will define—before quan-
tum fluctuations are attempted—a QCD Wilson loop.? If, on
the other hand, E, is proportional to the symmetric, spatial
gradients of a fluid velocity, one can formulate* the “vortex
stretching” term of three-dimensional fluid dynamics. When
the probability weightings used are, or are close to, white-
noise Gaussian, one may expect very rapid fluctuations of
the input E vectors; and this behavior has previously been
termed “‘stochastic.” Because this paper deals only with the
“deterministic” behavior of U(t,E ) under rapid, nonran-
dom fluctuations of the unit vector E = E/E, E = (E*)'/?,
we will henceforth use the phrase “rapidly fluctuating in-
put” (RFI) to denote that portion of the SC regime studied
here.

The weak coupling regime, defined by f; dt' E(¢') €1,
is essentially perturbative and poses no problem. The SC
regime, for which {3 dt" E(t') > 1, has two natural and op-
posite limits defined most simply in terms of the dimension-
less ratio p = |d E/dt |/E. For p =0, that is for a constant
unit vector E, the OFE of (1.2) reduces to an ordinary expo-
nential, if one merely rotates the coordinate axes such that
any one of them points in the E direction. Hence, for p <1,
one may expect a set of “adiabatic” approximations to U,
defined as corrections to the p = 0 limit; this has been dis-
cussed in some detail for SU(2) in Ref. 1, and can be ex-
tended to SU(X), although it will not be treated here. The
other, opposite limit p> 1 defines the much more interesting
RFI situation, and is the subject of this paper.

As in the SU(2) case, one finds that the complex coeffi-
cient functions F,, F, in the representation

U=Fy+ S A,F, (1.3)

are given as rapid fluctuations superimposed on a slowly
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varying, or averaged background; and the time variations of
the latter depend in a nontrivial way on the rapid fluctu-
ations of the input. In contrast to the SU(2) case, where the
four coefficient functions F,, — i*F, are real, the corre-
sponding functions of SU(N) are complex, and one must
pay special attention to the unitarity property of the U, fol-
lowing from (1.1) or (1.2),

UU=U*U"=1, (1.4)

which places certain restrictions on the coefficient functions.
Because of the need to maintain unitarity, the theoreti-
cal work in this paper will make use of the representation

—exp( 2/1 G)

with G = G/ G, G=(G*»'?, and G, a real vector with
L=N*— - 1 components. Approximate forms will be found
for G and G in the RFI limit, and a simple conversion made
to the coefficient functions of (1.3). For that conversion, as
well as for use in other steps of the analysis, a version of an
ancient representation due to Lagrange and Sylvester® will
be used, and will be denoted by the phrase “normal form,”

. 51]
FAv) =3 7 +-~/1 =y
( V) 7 (51 [N dv

a

(1.5)

(1.6)

where the &, denote the N eigenvalues of A-v, with v, an
arbitrary, L = N ? — 1 component vector. The derivation of
(1.6) is elementary, holds for any % (z) whose Fourier
transform exists, and has been relegated to the Appendix.

Because it is appropriate to compare the results of the
RFI approximation with the “correct,” numerically inte-
grated coefficient functions, the latter have been computed
using an algorithm® that guarantees unitarity. There, for a
fixed time interval A¢ one first replaces (1.1) by the differ-
ence equation,

Ut + At) = U(t) + iME(D)AtU(¢t) ; (1.7)

and then, in order to insure the unitarity of the numerically
integrated solutions, one replaces (1.7) by the equation

Ult+ Aty =U(t) + W/2D))MEWWAt [U(t + Ay + U0 ],
(1.8)

whichis thesame as (1.7) and (1.1) only in the limit At = 0.
The “solution” to (1.8) may be written as

14 (1/2))»-E(t)At)U(t) ,
1 — (i/2)AE(2)At

and is rigorously unitary, by inspection; that is, if U(z) is
unitary, then U(z 4+ Ar) is also. Equation (1.9) has been
used to compute the “exact” amplitudes with which our ap-
proximate forms are compared.

Asin Ref. 1, the essential idea is to extract, in the large-p
limit, the slowly varying envelope upon which the rapid fluc-
tuations ride, for in any physical context it is surely only the
slowly varying behavior that is of interest. Simple (unitar-
ity) considerations would, as for the SU(2) case, suggest the
improvement of the leading, “averaged” dependence, by in-
cluding FS corrections expressible in powers of 1/o0. How-
ever, for general SU(N), and in particular as N increases,
there will appear a certain difficulty in calculating FS terms,
and for reasons quite distinct from the “technical” difficul-

U(t + Ar) =( (1.9)
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ties alluded to above. Very simply, most of the coefficient
functionals ¥, will be expressed as increasingly nonlinear
functions of the G,,, and if one is interested in the slowly
varying, or averaged behavior of the F,, one will have to
perform averages over the corresponding combinations of
the G,. Our analysis, however, is really simple only in its
extraction of average values of the G, ; and since the average
of products is not equal to the product of averages—in par-
ticular, some slowly varying, FS dependence is always
missed—one may expect that, for certain F,, the FS depen-
dence estimated in the manner of Ref. 1 is bound to be in-
complete. For this reason, as well as for the “technical” rea-
sons described below, the results of this paper are restricted
to the leading-order estimates of F,, and the F,, which are

constructed from those parts of the averaged 8,, indepen-
dent of p (and, as in Ref. 1, from the p-dependent G).

Finally, a word must be said about the level of rigor—or
its absence—in this paper. When the analysis becomes too
difficult to permit a brute force extraction of a desired result,
an appeal will be made to intuition, to an argument labeled
by the phrase ““...what else can it be?”” And it may well be that
some subtlety not forseen by the author will answer this
question in a manner different from that found here. On the
basis of the numerical comparisons noted below this would
not appear too likely; but it must be understood that, without
honest mathematical rigor, such possibilities exist. Never-
theless, the predictions made in this paper are, at the very
least, interesting; and they may even be true.

Il. ESTIMATING G
A. The differential equation

One begins with the representation (1.5), differentiat-
ing U and substituting into the original Eq. (1.1), to obtain
the nonlinear relation

1
)»-Ezf du é
Q

— iuAG
>

or

_L J du tr[/i ey dd(t; "M-G]. 2.1

In all of the following we will assume that the time variation
of the components E, follows the rule

aE, (2.2)

:f:zbcprc ’

where the quantities p, are constants. It then follows that p
and E are orthogonal, and that the norm of E is unchanged.
For simplicity, we will also assume that the magnitude E
does not depend on time. From the experience of Ref. 1,
validated by the SU(3) example of the next section, one may
expect that the form of our leading dependence will be essen-
tially unchanged even if p and E are time dependent, as long
as the condition p> 1 is maintained.

Separating G into the product GG and calculating the
trace of all the multicommutators of (2.1) (which are ob-
tained by expanding and resumming in powers of 1), one
builds
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dG,
dt

E,=G,E®) +Ly [(1-&"*'30)-%] ,
2 b AG lsa

(2.3)

where the (4%); =i f; form the adjoint representation
matrices of SU(N). Solving for dG /dt, with the aid of the
relation

(1—e*)~'=1[1+icot(2)],
one can rewrite (2.3) in the form
da A A ~ ~ A
d: = farcGpE. + [A*G cot(A*GG) ], (E, — G, (E:G)) .

(2.4)

Asin the SU(2) case, the magnitude G is given in terms of 2\7
in the following way. Multiplication of (2.1) by 2, G, yields
the relation

GE=29¢ ,
dt
which, together with the initial condition G(0) =1, pro-

vides

3
G(t)=f dt'E(t')-G(t"), (2.5)
0
showing that G is completely specified by knowledge of G.It
will be convenient to introduce a new variable, 7, defined by
dr=dt* E(t), 7= fi dt"* E(t"), in order to rewrite (2.5)
and (2.4) as

G(r) =f dr E(r)-G(r) (2.6)
(4
and
dG
< - E,G.
dT f:zbc
+ [AG cot(AGG) 1, (E, — G,(E-G)). (2.7

For SU(2), where the f,,. = €,,., it is easy to see that

[(AG)?],, =8, — G,G,, (2.8)
and that (2.7) reduces to
‘;—G= —EXG +(E—GE-G))cot(G), (2.9)
»

as quoted in Ref. 2. For SU(¥), with N > 2, there is no rea-
son to believe that the equation corresponding to (2.9) will
depend only on the “group invariant” G?, for there are other
invariants, depending on N, such as d4,,.G,G,G., which
could appear in the corresponding equation. It is here that
the first stumbling block to a straightforward analysis arises,
for the averaging method to be used requires a certain clo-
sure property, which is difficult to see directly from (2.6).
What we shall do, instead, is to consider first a model prob-
lem, in which one pretends that the internal structure of
(2.7) is analogous to that of SU(2). Then, on the basis oAf
that model result, we guess the form of the more realistic G
dependence in the large-p limit. Finally, with the aid of the
exact (2.7), we can estimate the size of the coefficients of the
various terms, and find, for large p at any finite 7, that the
leading G dependence is just that of the model calculation.
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Needless to say, one would prefer a more straightforward
argument; but indirect as the present estimates are, they do
agree with numerical computations in at least one simple,
but decidedly nontrivial case of SU(3), as shown in the fol-
lowing section.

B. A simplified model

For N > 2, the relation generalizing (2.8) can be written
in various ways, but each of them apparently too complicat-
ed to permit the estimation of multiple products of (4 *G)?,
leading to a closed form for the quantity (4 *G)cot((A4 *G)).
To obtain a simple form for the latter, we introduce the mod-
el approximation

(AG)2, = PS,, + 0G.G, , (2.10)

which, effectively, pretends that the internal group structure
here is that of SU(2). There are other terms which could
possibly be added to the rhs of (2.10), such as das,G *d ot G, ,
and d,,*d,,G,G,, which can appear automatically for
N>2. A compact method of writing the exact rhs of (2.8)
uses the “normal form” to express the combination in terms
of Gell-Mann matrices and the corresponding d,,. of
SU(L), with L = N? — 1, and is noted in the Appendix.
With the model approximation of (2.10), the only re-
flection of arbitrary NV lies in the coefficients P and Q, which
are determined by insisting that the combination continue to
be orthogonal to either G, or G, ; and that the normalization
be appropriate to tr{(A*G)?). In this way, one finds that
—Q=P=C,(N)/(L—1)=N/(N?—2),whereC, is
the eigenvalue of the first Casimir operator in the adjoint
representation. Repeated products of (2. 19) can then be
summed to yield a differential equation for G,

da A A A\ AN
- © = — £ E,G. +P cot WP G)E, — G, (E-G)).
=

(2.11)

With the model (2.11), it will be possible to formulate an
“averaged” approximation to the coefficient functions of
U(t;E); the technique to be used resembles that of the SU(2)
calculation, but is different in detail because of the need to
work with a relatively large number of G, components,
growing as N for large N. If an equation, similar to (2.11),
could be obtained without recourse to the model approxima-
tion of (2.10), one would be in somewhat better shap/g as far
as the FS is concerned; for the leading dependence of G in the
large-p limit, however, it will be argued below that the model
estimates are sufficient.

We now form the following three quantities, 7
=3, G, p,E.,J=3,E,G,,andK =3, p,G,, and ask
for the equations satisfied by these objects in an averaged
sense, retaining only bilinear products of rapidly oscillating
dependence, such as E, E, and J itself. Asin the SU(2) case,
a cursory examination of any numerical output suggests that
Jis approximately a constant, of order 1/p, which means
that G will have small but rapidly oscillating components in
phase with those of E. If it turns out that K has a slowly
varying part, then that will also be true of G.

With the aid of (2.11), one builds the relations
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a _nN (K —p*J) —JIJP cot({/P G), (2.12)

dr L

%:I-*—\/Fcos(\/ﬁG)(l —-JY, (2.13)
;

dK

== —I—PJK cot(/P G), (2.14)
,

where the last two of these equations follow from (2.11)
without approximation, while the first has used the averag-
ing replacements

(E,E,)=6,/L, (2.15)
and
(E,G,) =8, (J /L + fop.{I)/Np*. (2.16)

In writing (2.15) and (2.16), the tacit assumption has been
made that there are in fact L =N 2 — 1 rapidly oscillating
components E,; and that their time average over rapid fluc-
tuations is of the same form as is their stochastic average. For
other situations, such as the SU(3) example of the next sec-
tion, the normalization factor (L /N) of (2.12) will be
changed; but this change will effect only the FS dependence.
Equation (2.16) represents a statement of internal consis-
tency, which is compatible with the definitions of both I and
J.

As in the SU(2) case, we use the “experimental” fact
that J can be considered to have a small constant, or aver-
aged value, on which is superimposed rapid fluctuations.
Neglecting, or averaging over such fluctuations, one then
sets dJ /dt = 0O to obtain from (2.13)

I~ —\P (1 —J%cot(yPG), (2.17)
whose derivative then yields
ar —JP (1 =JH(=JJP) RS S (2.18)
dr sin?(fP G)

Comparing (2.18) with (2.12), one finds that K must, on the
average, be considered as a constant, of value

K=Jp*+ (L/N)PJ(1 —J). (2.19)
Since the lhs of (2.14) is to vanish, one then concludes that

I= —JKJP cot(PG) . (2.20)
Finally, a comparison of (2.20) with (2.17) yields
JK=(1-J%, (2.21)

which, together with (2.19), serves to determine J as a func-
tion of p,

(L/NYPI(1 —J?) +Jp> = (1 =T/,
or

g2 L+ (L/N)P+p?)
2P-(L /N)

-0l ) ] e
(14 (L/N)P +p?) o

The negative sign of the square root has been chosen so that J
tends to zero as p increases. For large p, one has

J2~(1+ (L/N)P+p}) " 4 -+, (2.23)

thatis, J~ 1/p. Factors depending on N and L appear only in
higher-order corrections to the leading RPI behavior, and
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even though this is just a model computation, we argue be-
low that the same feature will be true in an exact rendering of
the leading, large-p behavior.

From (2.21) and (2.23) we now infer that K should be
assigned an average vaue, K = (1 —J 2y/J, and from the
definition of K one concludes that, to 1eadingA order, there
must be assigned an averaged, nonzero value: G, =p,. Our
model solution, denoted by the quantity U, is then

t
U= P G~f i L
0

P
This result is equivalent to that of the previous (and some-
what different) SU(2) calculation in the limit of very large
p- Since the p, are specified input constants, one can proceed
from (2.24) to the coefficient functions F,, F, by the use of
the normal form, (1.6). If the differences between products
of the averages of G components and the averages of the
same products is a FS effect, as is true in all the SU(2) work
and in the SU(3) example of the next section, then the lead-
ing, large-p behavior of the coefficient functions is obtained
from (2.24).
C. Guessing the solution

How could the use of the exact (2.7) change the model
result (2.24) that followed from (2.11)? The only (reasona-
ble) difference would be that G, would have a constant
(averaged over the rapid fluctuations) part that now de-

(2.24)

pends on unit vectors W ¢( p) more general and more com-
plicated than the W (" = p, alone. Such unit vectors, or-
thogonal to the p,,, can be constructed out of the gradients of
the N—1 independent invariants tr([A]); e.g., if
duse Py P =3d /dp,)(d, P, p, p,), then one choice for

w(Z)a is

(dabcﬁb/jc - ﬁa daByﬁaﬁﬁﬁy )
-1
’ (ngbCﬁbﬁc - [drsrlbr,bs,bt]2> .
One would then expect to find a representation for the aver-
aged G in the form of a sum of such terms,

Go=SeWP(p), (2.25)
where the coefficients ¢; remain to be determined, but where
the overall normalization is chosen to satisfy G > = 1. Under
a set of reasonable assumptions, we now obtain the leading
behavior of these coefficients.

/’Io see how this goes, return to the exact equation (2.7)
for G, and calculate the time variation of the same IJ,K
quantities as before. One can no longer carry through the
process of writing the quantity

0., = [AG cot(AG G) 1,

in closed form; but since Q,, will only be used to estimate
leading orders of magnitude when averaged, or contracted
with an E_, this will not be too important. Based on the
SU(2) work, on the model of the previous section, and on
the SU(3) example of the next section, we now introduce
two assumptions which form the basis of the argument to
follow. R

n C;gntraction with any E, (¢) produces for an arbi-
trary .% (G) a result of one nominal order lower in p,
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<Ea.9“(a)> = <Eaac> Eg““y(a)|a_.am) » (2.26)

where G denotes the constant dependence of G of O(1),
after averaging over the rapid fluctuations. Again, we adopt
the internally consistent relation (2.16), agd assume an
averaging over all L = N* — 1 components E,. By this as-
sumption, (I ) ~O0(1), (/) ~0(1/p),and (K ) ~O( p).

(2) The time average {g) over rapid fluctuations of any
quantity ¢(7) may still depend on a slowly varying r depen-
dence; and (dq/d7) = d (g)/dr. All slowly varying depen-
dence—such as that of G = § dr' J—will be treated as con-
stants during the averaging over rapid fluctuations. [Were
this not the case, then some of the O(1/p) could conceivably
be associated with slow variation of the G dependence.]

Since no approximation is now considered for the Q,,,
and since G,Q,, = @Q,,G = 0 by virtue of the definition of
A,,, we can drop the corresponding term on the rhs of the
exact (2.7). The counterparts of Egs. (2.12) through (2.14)
then become

di N

1
da _N g g 2)+0(——), (2.27)
dr L ( P Vi
dJ 1
Yo, 2.28
dr L Q ( )
aK _ —I+pa<i‘bac)—i—Qabla=amu (2.29)
dr 3G,

<

where the averaging symbols ( ) have been suppressed, as in
Sec. II B, but where an averaging has been performed to
obtain each of these three equations. If, again, we call upon
the “experimental” knowledge that J is a constant, in the
large-p limit, we may infer from (2.28) that

I=(l/L)trQ, (2.30)
and then, from (2.27), that
1 d
K=Jp> 4+ ——1tr[ 1. (2.31)
N [ ]

Substituting into (2.29), and comparing with (2.30), one
can see that tr Q(7) satisfies a forced harmonic oscillator
equation, with frequency (1/27)*(N/L) Y2 and driving
term given by p, {E, G. ) (3 /9G.)Q,, |5 ». More detailed in-
formation is difficult to extract; but for our purposes essen-
tially all that is needed is (2.31), which says that to leading
order, K =J *p”. In terms of G, this means that 2, 5,G,
= pJ, and one can conclude that G is given by a series of
terms of the form of (2.25), of which the coefficient multi-
plying g, say c,, is given by p*J. In the previous model calcu-
lation, we knew that ¢, = 1, but that information is missing
here. In general, G may very well have projections in
(group) directions orthogonal to g, as explained just before

(2.25). N
Suppose that G does have a projection in the direction of

a unit vector ( p) perpendicular to 5. Analogous to the
quantities K and I, one may define the sums M =2, v,G,
andP=2, f,.. 8,, U, E‘C , where M measures the projection of
Ginthed direction, and the averaging of P must generate a
term of O(1/p). Following the same averaging techniques,
one then finds that
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A A a
M_ _py Vo (E,G.) —— Qup |5 (2.32)
dr G,
and
dpP N N
e = — e Jye —M, 2.33
dr L/t (2:33)

where the first term on the rhs of (2.33) has been included,
for clarity, even if the value of this term is zero; another pair
of terms, not shown, have vanished by symmetry. That first
term is zero because v has been chosen orthogonal to p; but if
it did not vanish it would contribute a term of order unity to
(2.33). Because all rapid fluctuations of P have been aver-
aged away, so that dP /dr is at least of O(1/p), the inescap-
able conclusion is that M must also be of O(1/p). If this
arbitrarily chosen projec;\ion of Gis O(1/p), th/gn to O(1),
the properly normalized G can only be given by G = p; then,
¢;=1andJ~1/p.

By this construction, the model result (2.24) is correct
for the non-FS terms of O(1) in the coefficient functions
Fy, F, built from (2.24) with the aid of the normal form
representation. This statement will next be verified with the
aid of a simple but nontrivial SU(3) calculation. It must be
remembered, however, that in the passage from the G de-
scription to that of the coefficient functions, we are going to
assume that the difference between the average of a product
of G components and the product of the corresponding aver-
ages is of higher order in 1/p. In fact, in the discussion of Sec.
I1 B, we have cavalierly ignored the difference between the
average of products of the 7, J, K and the corresponding
products of the averages; this is obviously wrong, since it is
easy to see that

(KJ)~(1+ 1/LY(K){J),
(WY~ +2/LYUIYTY, IH~I Y +1/L.

In spite of these omissions, the O(1) results of the model are
unchanged. For the G, the neglect of such correlations does
seem to be a viable assumption, as is born out by the calcula-
tions (and figures) of the next section.

lll. AN SU(3) EXAMPLE

The simplest, nontrivial example of an SU(3), OE };gs
but a single component of p, driving two components of £,
each in a different “sector” of SU(3).AThat is, we suppoge
that the only nonzero components are E, = cos(wt) and E;

= sin(wt), so that p, =§8,, p with p = 2*(w/E). Hence

& ' ARAARA
RO M/

FIG. 1. A superposition of O( 1) averaged approximations and four numeri-
cally integrated functions, for £ = 10 and @ = 60.

H. M. Fried 1279



[a)]

— M
ALy )
RO

FIG. 2. The same as in Fig. 1, except that @ = 90.

the leading G ) —=§,,, and the nonzero coefficient func-
tions F,, F, are easily worked out to be

Fy=1[142cosG],

and
F,=isinG, F;=14[1-cosG],
Fy=(1/2y3)[1 —cos G .

(3.1)

(3.2)

A superposition of these four predictions with those of
the numerically integrated solutions is given in Figs. 1 and 2,
in the simplest possible situation of constant  and E, for two
different values of p. (Here and subsequently we use the
notation R, and I, to specify, for this special input, the non-
zero real and imaginary parts, respectively, of the F,.) Only
for R is the agreement less than satisfactory; and this will be
discussed separately, below.

At larger ¢ values, however, there is another source of
error in the graphical presentation of these results, as the
differences between the numerical integrations and the true
solutions become evident. This is to be expected since (1.8)
and (1.1) become the same only in the limit A¢— 0; for finite
At the numerically integrated functions start to separate
from the exact solutions, and this separation becomes
greater the larger the value of ¢. In Figs. 3 and 4, produced
for the same ¢-dependent p(¢) but for different values of A¢,
this “A¢” effect can clearly be seen. One infers that, in the
limit of very small Az, the smoothly varying part of the exact
functions are well described by (3.1) and (3.2), even when p
depends upon ¢; the only requirement is that p> 1.

LT= 005 OM= 60

E(T)=10+2*COS{T*T)

FIG. 3. A superposition of approximate and numerically integrated func-
tions for R, and I,, with @ =60 and E(¢) = 10+ 2* cos(¢?), for
Ar = 0.005.
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DT= 0005

Ol4= 60

E(T)=10+2*COS(T*T)

RO pap

FIG. 4. The same as in Fig. 3, except that At = 0.0005.

Finally, one comes to the remaining five functions
whose O(1) dependence is predicted to be zero by this analy-
sis, I,, I5, R, R,, and R. Figure 5 clearly shows that these
functions decrease at least as fast as 1/p; and it also shows the
existence of higher harmonics present in those curves, which
becomes especially clear for larger values of p.

Although no statement of FS has been attempted in this
paper, it is perhaps worth remarking that an attempt to write
down appropriate corrections to all of these functions can be
organized by using the model forms of Sec. II B, for this
simplest case of SU(3). This is not completely correct for
reasons mentioned above: neglect of the O(1/p) terms due
to the difference of averages of products and products of
averages, and due to the uncertainties of the model itself. But
it is at least interesting to see how closely such FS can ap-
proximate the structure of the numerically integrated func-
tions. For a set of O(1/p) corrections to the G,, computed in
a straightforward way and converted to the coefficient func-
tions, this is shown in Fig. 6. Clearly, one is on the right
track, even if other, neglected effects become important at
later times.

IV. SUMMARY AND CRITIQUE

A partial, first step towards the SC, RFI approximation
of SU(XV) OF’s has been suggested in this paper, in which the
leading terms of that OE are specified. A comparison with
the numerically integrated functions of a simple but nontri-
vial SU(3) example illustrates the sort of agreement that
may be expected.

While interesting, and of probable future use in estimat-
ing functional integrals over distributions close to white-
noise Gaussian, the analysis is incomplete in that it is unable
to extract the O(1/p) corrections. The method of analysis

ar= 80 oM= 90 OM= 120 oM= 150
R4 “P,-”U R4 R4 R4
e
12 ]l 2 , 12 P 12 o "
i S Wi
F6 EONVIL.LY.7.\ RO st RS R&

1S s < o
A o
‘P]W\ﬂm 3] " R -

FIG. 5. Numerically integrated functions which are (at least) of O(1/p)
illustrated for £ = 10 and four choices of p.
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FIG. 6. An example of FS for the set of nine functions, in the SU(3) exam-
ple described in the text.

also leaves unproved an assertion on the sources of O( 1/p)
dependence. It will therefore be worthwhile to list those in-
adequacies of this treatment; if such difficulties could be
overcome, one would have a much more satisfying approach
to this entire problem.

(1) The difference between an average of products of
the components G, and the product of corresponding aver-
ages has been treated as an effect of relative O(1/p). This
could be proved if one were sure that slowly varying G(r)
dependence does not contribu}e O(1/p) terms which have
here been associated with the G, dependence. In this paper,
averages over rapid fluctuations have been taken under the
assumption that the G(7) factors may be treated as con-
stants, for which case the O(1/p) behavior is as stated. With
one possible exception, the SU(3) example seems to bear
this out; but no proof has been given.

(2) The averaging process used has been the simplest
possible, with every contraction of an £ component witha G
component assumed to be of O(1/p), and all noncontracted
G components replaced by their O(1) average value. In ef-
fect, no higher harmonics of the RFI were considered, even
though one can see them appearing in Fig. 5. Further, the
averaging process depends on the number of nonzero E com-
ponents, with different normalization factors appearing in
different situations.

With one exception—the discrepancy associated with
R, in Figs. 1 and 2—these assumptions appear to work quite
well. Within the context of this approach, one can try to
understand possible reasons for such poor accuracy. Since
R, really depends on G.?, one might expect that this is an

indication that the difference between (672 ) and (67)2 can
be of O(1). However, R, also depends upon G, and there is
no corresponding effect there. [ R4 has been numerically cal-
culated for a variety of large p values, and one finds no appre-
ciable difference between the vertical separation of the ap-
proximate and numerically integrated curves, measured at
the same geometric points (e.g., at that value of ¢ corre-
sponding to the intersection of R and R;,).] One might next
ask if this is a “At” effect, due to the inaccuracies of the
numerical integration; but the answer is, again, no. The only
possibility left is an error in the numerical integration, al-
though that has also been rechecked. As it stands, the author
has no explanation for the discrepancy of the Ry curves.
Many of these difficulties would disappear if a useful
representation of (A4 *G)? could be found, similar to that of
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the model of Sec. II B. This is important because it surely
holds the key to a development of the FS corrections. In the
previous SU(2) analysis, it was possible to calculate the
O(1/p) corrections, which can always be relevant to some
physical situation. For example, in the problem of neutrino—
antineutrino oscillations in the presence of a constant plus-
time-periodic magnetic field,” the probability | ¥ |? of finding
an antineutrino at time ¢, when there was none at time t = 0,
is just one of finding the FS to the OE representing the solu-
tion to a pair of coupled, first-order differential equations for
the neutrino and antineutrino amplitudes. In the notation of
Ref. 7, the answer to that problem is

NP = [(a)m) sin{(2ogr/w) sin*(wt /2) — wyt) ]2
B [1—rsin(wt)]

Dpg
for fixed wt, r# + 1, and w,, €wp. It corresponds to the
square of certain O(1/p) terms (F,? + F,?, in the notation of
Ref. 2), where p = 2(wp/®,,)|1 — rsin(wt)].

In spite of the limitations described above, it is hoped
that this paper will point the way towards a systematic meth-
od for the approximation of OE’s in the RFT limit.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the kind hospitality of
colleagues at Physique Théorique, Université de Nice, and at
the Observatoire de Nice, during the academic year 1985~
1986, where most of this work was performed.

An NSF-CNRS travel grant was useful in the prelimi-
nary stages of this project. This work was supported in part
by the U. S. Department of Energy Contract No. DE-
AC0276A03130.A009-Task A.

APPENDIX: DERIVATION OF THE “NORMAL FORM”

The derivation of (1.6) may be sketched as follows. One
writes an arbitrary % (A+G) in terms of its Fourier trans-
form,

+
F (AG) = f do 7 (0)e“*C,

and considers the unitary exponential written in terms of its
coefficient functions,

e*S = F, + iMF.
Let the N eigenvalues of A-G be denoted by &, (G). Then

F, =—1—tr [e*C] =L i e,
N N =
and
F = —Ltr[i,-e"“’"c] - _N_d F,.
2 20 9G,;
Hence

1 + + o .
F(AG) =——J dz?(z)f dw e ™ "*
2T J- .

N
iwé; 1 /11' a§1}
NS AR A L
1;1 [N 2 4G,

or
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N 1 1 8§1]
FAG)= > F —+—A, =1,
(G ,; (g,)[N+ 2746,

which is the “normal form” quoted in the text. A similar
representation may be given for any # (A*G) in terms of
the SU(L) defining representation matrices A,, with
L=N?>—1and AG=1,"A,,

L
F(AG) = zﬁ@lw]){%—Jp%A

I=1

43180 ]
© 9
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Nonlinear equations defined by a positive definite, elliptic operator and nonlinear functions are
considered. It is proved that a unique solution exists for a wider class of problems than
previously determined, which may be approximated by an iterative method. These results are
shown to hold for an equation arising in some reaction-diffusion phenomena.

I. INTRODUCTION

Keller! and Pennline’ have considered two-point
boundary value problems of the form

~ L i, 0<x<l, WO =u(h=0, ()

where fis a function of u. Equation (1) is equivalent to the
integral equation

u(x) = f dE g, (66) [ku(£) + FlEu(E)),

where g, (x,£) is the Green’s function defining the inverse of
the operator { — (d */dx?) + k) with the stated boundary
conditions, whenever it exists.

Keller! has shown that if, for all # and all xe[0,1], 3/
du = [ is continuous and 0>f'> — N with some N0, then
Eq. (1) has a unique solution u given by

u = lim u,,

n— oo

where uy(x) =0,
1
o1y (0 = [ A () [, (6)
(4]
+f&u, ()], n=0,1.2,..,

and k>N. The convergence is uniform with respect to
x€[0,1]. Pennline? points out that it is possible to take k>N /
2, which improves the rate of convergence. Also an attempt
was made at relaxing the conditions further.

The work of Ref. 2 was motivated by the equation

d2 _¢2v

d .2
U'(O) =07 U(l) = 1) (2)

which arises in the problem of steady-state, isothermal, reac-
tion-diffusion of a substance involving nth-order kinetics.?
By settingu = 1 — v, Eq. (2) reduces to an equivalent equa-
tion,

v>1l, 4°>0, O<x<l,

2
illxl; =¢*(1 —u)*, O<x<l,

w'(0)=0, u(l)=0. (3)

While the results of Refs. 1 and 2 are not applicable in this
case, a similar but independent treatment was used in Ref. 2
to conclude that, with a restriction on the values of ¢, Eq.
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(2) has a unique solution which may be approximated by the
iterative method.

Let D be an open, bounded subset of R /,/>> 1, and let D,
the boundary of D, be piecewise continuous. Also let H be
the Hilbert space of square integrable functions of x on
D = DUJD with the norm denoted by ||-||. In the present
note, we consider the equation

Lu = f(u), (4)

where L is a positive definite operator from H to H. Let A be
the greatest lower bound of L. It will be assumed that
(L + k) ' for each k> — A is an integral operator with its
kernel, still denoted by g, (x,£), being a non-negative,
bounded function on D X D. As a result of the boundedness
of g, (x,£), (L + k)~ ' is a Hilbert-Schmidt operator and
hence A is an eigenvalue. These conditions are satisfied, in
particular, for the case when L is the elliptic operator defined

by
Bu(x)
E ( ox )

x,j— j

(Lu)(x) =

+ ag(x)ux), xeD;

5u(x)

a(x)u(x) + B(x)——==0, xedD;

a(x) and B(x)>0, a(x) or B(x)>0, a(x)#0;

where d /d7 is the conormal derivative, and the coefficients,
a;(x), are the elements of a continuously differentiable ma-
trix-valued function on D that is bounded below by a positive
constant and a,(x)>0 is continuous.” It is clear that the
operators appearing in Egs. (1) and (3) are special cases of
the elliptic operator considered here.

In addition to the generalization described above, we
extend the results of Refs. 1 and 2 to include f with /" bound-
ed above by a positive constant instead of zero. We show
further that this weaker condition on f’ need be satisfied on a
conveniently characterized narrower set of functions only.
As an application, it is deduced that Eq. (3) has a unique
solution for all values of ¢ which may be approximated by
the iterative method. Present results complement, also,
those of Ref. 5 where Eq. (4) with / belonging to a different
class was studied.
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Il. EXISTENCE AND APPROXIMATION OF v

Let S be a given set of functions and let ||| - ||| denote the
supremum norm, i.e., |||v||| = Sup,.5 |v(x) | whenever it ex-
ists. Condition (Cl) will be said to be satisfied on S if
(C1) SCH, Sis convex and it is closed with respect to ||| -|{|-

A set S is convex iff wvweS implies that
[tv + (1 — Hw]eS for each r€[0,1], and S is closed in the
stated sense iff, with a given sequence {v,, } C.S of bounded
functions |||v, — U, ||| = pm- . Oimplies thatv =lim_ v,
€S. The set .S may or may not be closed with respect to || - |}.
With (C1) satisfied, let f be such that
(C2) there exist constants ¥ and N such that for all veS and
allxeD, A>y>f"(v)> — N, N>0;

(C3) there exists a veS such that f(v)eH.

If (C1) and (C2) are satisfied, then (C3) implies that
Sf(v)eH for each veS for the following. With v, weS,

1
Sw) =fAv) +fdtf’[tv+ (1 -Nw]v—w).
o]
From the convexity of S and (C2), it follows that
1
7>f dif'[tv+ (1 -wl> —N, (5)
(]

implying that | flw)|<|f(v)] + max(y,N)|v — w|. Since
v — w|eH, f(v)eH implies that f(w)eH.

In view of the above,

A = (L + k) '(kv + f(v)), veS,
defines a one-parameter family of operators A4, from S to H
and ke( — A, 0 ). Furthermore, the fixed points of 4, and

the solutions of Eq. (4) are in a one-to-one correspondence.
The parameter £ will be assumed to be restricted by

(C4) k>i[max(y,N) —y] = k.
We shall also assume
(C5) for some k satisfying (C4), 4, SCS.

With ueS, letu, , , = A,u,,n=0,1,2,.;{u,} will be
called the iterative sequence generated by u,. It follows, by
induction, that {u, } .S, for all k in conformity with (C4)
and (C5).

Theorem 1: Let S, /, and k be such that the conditions
(C1)~(C5) are satisfied, and let {u,} be the iterative se-
quence generated by a u,eS. Then 4, has a unique fixed
point  in S and

1, —ull] = 0.

Proof- We divide the proof in the following five steps.

Step 1: A, is a contraction of S'in H.

Proof: Since A,.S CS, A, is a map from § to S. With
v,weS, we have

Ao —Ayw= (L+ k) '[k(v—w) + f(v) —flw)]
= (L + k)" 'B; (vw) (v —w),
where B, (v,w) is the operation of multiplication defined by
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1
B, (vw)h = (k +fdtf’[tu + (1 — t)w])h, heH.
0

Since S is convex and (C2) holds, the inequality given
by Eq. (5) is valid, which in view of (C4) yields

1
k+y>k+jdtf’[tv+(l—t)w]
0

>—(k+7v), k+y>0.
Hence, ||B, (v,w)||<(k + 7). Also, ||[(L +k)~'||<1/
(k + A). It follows that
4o — A w]| < llv — wl,
where

He=k+y)/(k+A) <l
Step 2: For veS, A, U is bounded.
Proof: For each xeD,

J,—, dE 8. () ko (&) +f(§;v(§m|

[((Av) ()| =

<lkv +f(v)ll[ f,—) ds‘gi(xé)]m

by the Schwarz inequality. Since g, (x,£) is bounded and the
measure of D is finite, the bracketed term is bounded, say by
M. Thus

[ (4, 0) (x)|<M ||kv + f(V)]].

Step 3: For wvweS, |[||4v—Aw|||<Mk+7y)
X |jlv — wl}.
Proof: For each xeD,

(v — Apw) ()] = U_dggk )
D

X [By (v,w) (v — w) ] (&)
<M ||By (wuw) || [lv — wl,

as in Step 2. The result follows by observing that
|| B, (vw)||<(k + 7), as in Step 1.
Step 4: {u, } is a Cauchy sequence with respect to ||| |||
Proof: A proof of the fact that {u,}CS is a Cauchy
sequence in H, i.e,,

”un_um” - 0,
H,m— oo

follows from Step 1. Since {u,, }& CS, from Step 2, {u, }* is
bounded. From Step 3,

Nttn i1 =ttt |1 = [[Aittn — Aicti |||
<Mk +Pu, —unl|l - 0

for {u,, } is a Cauchy sequence in H.

Step 5: Result of Theorem 1.
Proof: Since S is closed with respect to ||| |||, it follows
from Step 4 that there exists a #€S such that

tlim [{|u, — ull] = lim ||| 4, — ul]] = 0.
Since A4, is defined on S, 4, u is well defined. From Step 3,
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I”Akun ‘Aku[||<M(k+7/)“un _u“
<Mk +7)|||u, —ul|

- 0,

where M is a constant. This implies that u = 4, ». To show
the uniqueness, let 4, # = #€S. Then from Step 1,

llu — &l = |dxu — 4,
<pcllu — @l
=0
for 1, < 1. This implies that « = & almost everywhere. How-
ever, u = i everywhere, for, using Step 3,
[l — a{}] = [||dxu — Axal]|
Mk +p)||u— i
=0.

Since u, = (kK + ¥)/(k + A) of Theorem 1, Step 1, is
an increasing function of k on ( — A, « ), the rate of conver-
gence is expected to improve with decreasing values of k

i

within the restriction imposed by (C4). Thus, for computa-
tional purposes, it is desirable to take k = k. Further, it is to
one’s advantage to obtain tight bounds on f”’, which can be
checked by considering the behavior of = (k + )/
(k + A) with respect to the variations of y and N. This point
was discussed also in Ref. 2.

For fin a smaller class of functions, a stronger restric-
tion on k enables one to obtain a monotonically convergent
{u,}, which we show in Proposition 1, This result may prove
useful when a slower rate of convergence may be tolerated in
favor of the monotonicity.

Proposition 1: In addition to the conditions of Theorem
1, let u, = 0€S, £(0) >0 for all xeD, and let k>N. Then, in
addition to the result of Theorem 1, {«,} converges mono-
tonically to « from below.

Proof: We need show only that {u, } is a nondecreasing
sequence. Since g, (x,£) >0,

u,(x) = f_ds“gk (x,£)f(£;0) 20 = uy(x).
D

; we have that

n—1»

Letu,>u

(1 — 4,) () =f_d§gk(x,§> (B (st )ty — 11, 1) ] (E)
D

>0

for

1
k+fdtf’[tu,, + (1 —0u,_,]>0
0

implying that
[Bi(upyut, ) (U, —u,_1)](£)>0.

The result follows by the induction principle.

We have used the non-negativity of g, (x,£) in Proposi-
tion 1, which was not needed in Theorem 1.

If we take S = H in Theorem 1, then (C1) is clearly
satisfied. If (C2) and (C3) hold and & is chosen according to
(C4), then (C5) is also satisfied. Therefore the result of
Theorem 1 is valid with S = H. This generalizes the result of
Ref. 1. However, the requirement that (C2) be valid for all
veH is too stringent to be satisfied by a large number of prob-
lems of interest. An attempt at relaxing this requirement was
made in Ref. 2, but the new conditions are too limiting to be
useful. In particular, it was assumed that, for all non-nega-
tive v bounded by a fixed constant, 0>f(v) > — (6 + N)v,
with some §, N>0. By setting v = 0 one has that f(0) =0,
which is serious limitation.

In the following, we give some useful characterizations
of sets that may replace S in Theorem 1 and Proposition 1.

Let f(0)eH and

B, = (L+O7A0)], &> —A

Non-negativity of g, (x,£) implies that u.>0. It is also
bounded as in Step 2 of Theorem 1. Since

(L + k), = |f(0)| + (k=)
it follows that
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—
a4, = (L+K)'IAO)| + (k=a.], k> —A.
Let
Q, ={v: |v|<z,}
and let
P, ={v: O<w<i }.

It is straightforward to check that (C1) and (C3) hold on
Q. and P,. Assuming that (C2) is satisfied, one may restrict
k according to (C4). In Proposition 2, we determine condi-
tions that imply (C5) with.S = Q, and § = P,.

Proposition 2: Let the symbols be as above. If there exist
& and k& such that, for all xeD,

(i) for each veP,, O<kv + f(v)<f(0) + (kK — ),
(ii) for each veQ,, O<|kv + f(0) |[<|f(O)] + (kK — )i,
then (i) 4, P, CP, and (ii) 4,0, CQ,.

Proof: We give a proof of (i); a proof of (ii) follows by
similar arguments by estimating |4, v| instead of 4, v.
For each veP,, we have

0< (Aew) (x) = f_ dE g, (5,8) [ko(£) +FED ()]

< f_ dE g, (&) [[(60) + (k= )T (£)]

=1, (x).

It is clear that, ifg(C2) holds on £, Q. and with k in
conformity with (C4), the corresponding condition of Prop-
osition 2 also holds; then (C1)-(C5) are satisfied with
§S=P,, S=Q,, implying the validity of the result of
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Theorem 1. In case of P, if u, =0 and k>N, then, from
Proposition 1, a monotonic convergence results.

Hl. APPLICATION

It follows from the results of Sec. III of Ref. 2 that Eq.
(3) has a unique solution u, satisfying

0<u(x)<1 — (cosh ¢x)/(cosh ¢) = y(x)
for each ¢ such that

(cosh ¢ — 1)/(cosh k — 1)>¢%/ (k2 cosh @),
where

k=1 [1 + (1/cosh ¢)"~'].
Also the iterative sequence generated by y(x), with k = IAc,
was shown to converge to #(x). The author considered Eq.
(2); the results given here for Eq. (3) follow by setting
u# =1 — v. In the following we use the results of Sec. II to
show that the existence and convergence results hold for Eq.
(3) for all real values of ¢, with any k>k and any u,(x) such
that 0<uy(x) <y (x). _

First we note that, in this case, /=1, D= [0,1], and
A = 7*/4.Forv = 1, Eq. (3) is solved easily, yielding u = y.

Let v>2. With § = ¢%, i1, = y<1, and 0<f(0) = ¢d’eH.
Let P, be defined as in Sec. I1, i.e., vEP, implies that O<v<u,
<1. Now for veP,,

— 8= —v¢*(1/cosh $)" " '>f"> — vg*.
Thus (C2) is satisfied with ¥y = — § and N = v¢”. Let
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k>y(vg® + ),
which satisfies (C4). For each veP,,

& + (k — ¢*)v = kv + ¢*(1 — v) >kv + f(v) >0.

For v»2, k> ¢ consequently,
#* + (k — ¢M)v<d® + (kK — ¢, = f(0) + (k — )i,
and the condition (i) of Proposition 2 is satisfied.

Since the conditions (C1)—(C5) of Theorem 1 are satis-
fied, Eq. (4) has a unique solution, ueP;, for each value of ¢
and the iterative sequence generated by any u,&P, converges
uniformly to u. If we take u, = 0 and k>v¢?, then the con-
vergence is also monotonic from below.

It is not necessary to restrict v>2. In fact, v>1 may be

allowed to be a continuous parameter. For the above argu-
ments to hold, all one has to do is to take

k>max(¢L(vé® + 8)).
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On the existence of infinitely many resonances in the scattering problem
based on moment conditions and entire functions
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It has been well proved that there are infinitely many resonances in the scattering problem
provided the potential V'(¢) satisfies the moment conditions §&|V(2) |t " dt = O(n'' ~ "),
€>0, n=0,1,.... In particular, if ¥(¢) has a compact support then the result of Rollnik [H.
Rollnik, Z. Phys. 145, 654 (1956) ] and Regge [T. Regge, Nuovo Cimento, 8, 671 (1958) 1 is
obtained and if |V(¢)| ~exp( — 72" *€), 7,6> 0, we have the results of Sartori [L. Sartori, J.

Math. Phys. 4, 1408 (1963)].

I. INTRODUCTION

It is well known (see Agranovich and Marchenko,'

p. 20) that the Schrodinger equation
Yy +2Zy=V(x)y, 0<x<w,

has a solution E(x,z) given by

E(x,z) =™ + f K(x,t)e™ dt, (1
where the kernel K (x,t) satisfies

IK(x,0)|<4e” o[ (x +1)/2], (2)
where

o(x) = Jw|V(t)}dt< o0

and
o,(x) =Jw|V(t)}tdt< 0.

For x =0, the function f(z) = E(0,z) is analytic in
Im z > O (the Jost function, see Newton,” p. 340) and as usu-
al, a zero of f(z) is called a resonance in the scattering prob-
lem (excluding the bound state, see Ref. 2, p. 360). Natural-
ly, we may ask under what condition on the potential V' (x)
can there be infinitely many resonances? In this paper, we
answer this question by the following.

Theorem 1: There are infinitely many resonances if the
Jost function f(z) is entire and the potential satisfies the mo-
ment conditions

J-IV(t)|t"dt=0(n““’"), x>0, €>0, n=0,1... .
(3)

As a consequence of Theorem 1, we obtain the following
known result due to Rollnik® and Regge.*

Corollary 2: There are infinitely many resonances if the
potential has a compact support.

To prove Corollary 2, we need only observe that
|V(2)| = Ofor all £>T, where T> 0 is fixed, so that

J [V(e)|t"dt<CT" "', forsome C>0.
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This satisfies the moment conditions (3). Clearly, the Jost
function is entire and hence the assertion follows from
Theorem 1.

Although the regular solution is always an entire func-
tion, the Jost solution and the scattering operator are only
entire functions for potentials which decrease faster than an
exponential at infinity, see Nussenzveig (Ref. 5, p. 201).

lIl. ENTIRE FUNCTIONS

As we saw in the Introduction, the resonances in the
scattering problem are the same as the zeros of a certain class
of entire functions. To study such a class, we call an entire
function feB if f(z) is bounded in a half-plane H and f(z) has
a radial limit /, as z— o0, along the boundary of H, where we
require f be nonconstant.

We note that the function f(z) = E(0,z) defined in (1)
belongs to class B but not the function e®*, x > 0. Functions
in class B can possibly have no zeros as will be seen from the
following.

Theorem 3: If feB, then e/cB and the function f(z)
tends to / uniformly in H, as z— , so that f(z) has at most
finitely many zeros in H provided ! #£0. If f(2) is of exponen-
tial type 7 and belongs to L ? on the real axis, then f(z) can be
represented by

flz) = ff eV (t)dt, VeL?( —1,7).

Proof: We first observe that both of the boundedness and
the radial limit of feB are preserved by the exponential func-
tion and hence e /€B.

Next, in view of Montel’s theorem (see Boas,® p. 5), we
see that the function f{z) tends to / uniformly in H, asz— co,
so that it cannot have infinitely many zeros in H provided
1 5£0.

Finally, the representation of f(z) follows from the Pa-
ley—~Wiener theorem (see Ref. 6, p. 103) and the proof is
complete.

Note that the hypothesis / 540 in the above result is nec-
essary. For instance, the function

flz) =(e"—e )/ (z—1)
belongs to B in the upper half-plane with / = 0 and has infi-
nitely many zeros there at i + 2n7, n=1,2,... .
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Note that the function e is of infinite order and there-
fore the condition on the finite order is what we need to have
infinitely many zeros as will be seen from the following.

Theorem 4: If feB and if f'is of finite order, then f has
infinitely many zeros.

Proof: Suppose on the contrary that / has only finitely
many zeros. Then fcan be represented by

flz)y =0, (2),

where P, and Q,, are polynomials of degree n and m, respec-
tively. Without loss of generality, we may assume that
the half-plane in question is the upper half-plane
U={z: Imz>0} Weset

P (z)=ay+az+ " +a,z" a,=re#0, 0<a <27

Then it is easy to see that P, (z) — w0, as z— o« along the ray
[ = {Re/®"~®/". O<R < w0 }. Clearly, if n > 1 then the ray
I" lies on U which contradicts the boundedness of fin U.
Hence we must have n = 1 and

f(z) =e™Q,, (2).

This in turn implies that f{z) — o0, as z— oo along the real
axis, a contradiction again. We thus conclude that f/ has infi-
nitely many zeros.

We note that any entire function which is not a polyno-
mial takes every value in its range with one possible excep-
tion infinitely often due to Picard’s theorem (see Titch-
marsh,” p. 277). The function e’, feB, has the exceptional
value 0. However, any function considered in Theorem 4 has
no exceptional values in its range as will be seen from the
following extension.

Corollary 5: Under the hypothesis of Theorem 4, the
function f assumes every value infinitely often.

Proof: For any value v, the function f — veB and of finite
order. Hence the assertion follows from Theorem 4.

Theorem 6: Let f(z) = ¢ + f*K(x,1)e™ dt, wherecis a
constant, x>0 is fixed, and K(x,) satisfies

J|K(x,t)1t"dt:0(n“‘€)"), €e>0, n=0,1,...
4)

If f(z) is an entire function, then it is of order <1/€ and has
infinitely many zeros.
Proof: Since f(z) is entire, it can be expanded as

flz) = i a,z",

n=0

where
a, = (—'——I)—J K(x,t)t"dr.
n! .

Using (4) and Stirling’s formula, we see that /(z) is an entire
function of order (see Ref. 6, p. 9)

nlogn

. nlogn 1
p = lim sup < ———
e oo log(1/]a,|) n—-~ne(logn — 1) €
Since the function f(z) is bounded in Imz>»0 and
f(z) —»c, as z— + « along the real axis, it follows from
Theorem 4 that f has infinitely many zeros. This completes
the proof. ,
Note that from Corollary 5 we see that the function
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F(z)= JmK(x,t)e"z’ dt

assumes any value infinitely often in the lower half-plane.
With the help of Theorem 6, we are now ready to prove
Theorem 1.

1Il. PROOF OF THEOREM 1

According to (2), we have the inequality
K (x,0)|<1e”Po((x + 1)/2).

It follows from (3) that

f [K(x,t)|t" dt <—1—e"'(")f (j {V(s)|ds)t"dt
x 2 x (x+1)/2

o 25 — x
- %emmf |V(s)|dsf t"dt

<_1_1ea.(x)J‘ lV(S)f(ZS _x)n+ 1 ds

n—+

_ 2n+1 al(x)O((n+1)(1-e)(n+l))
n+1

= O0(n'' = 9m).

Hence the kernel K (x,t) satisfies condition (4) in Theorem
6 and the assertion follows from that theorem.

As a consequence of Theorem 1, we obtain Corollary 2
and the following result of Sartori.®

Corollary 7: There are infinitely many resonances if the

potential satisfies
V(t)| ~exp( —7t'*t€), 7,€>0. (5)

Proof: Clearly condition (5) gives
f exp( — 7' " )"dr=((1+e)7™) 'T(N+ 1),
0

where N=(14+n)/(14+¢€) and T"(NV + 1) =NI<N¥
<n' =Dforalln>2e(1 — €))7, 0<e< 1 (itsufficesto
prove the case € < 1). It follows that

f V(D) |t" dt = O(n —5m), 0<5<§.
0
This together with Theorem 1 yields the assertion.

IV. CONCLUSIONS AND OPEN PROBLEMS

Note that the method used does not generalize to poten-
tials with exponential or slower decrease at infinity.
In view of the function defined in Theorem 3,

f2)=(e"—e )V (z—1i),

which has infinitely many zeros in U, we may ask whether
there is a potential V(¢) such that the function

fo(z) = Jwe“z’V(t)dt
(4]

is entire and has infinitely many zeros in U. In general, we do
not know the answer. However, if we replace U by the clo-
sure U, then such a potential does exist. For instance, we
may take V(¢) = 1, 0<t2m, and V(¢) =0, t> 27. Then

Sfo(2) = (2™ — 1)/ (iz),
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which has infinitely many zeros at z = 1,2,... .

Naturally, we may ask whether there is a potential such
that

0

(" —e M)/ (z—1i) =f eV (t)dt. (6)

0

The answer should be negative. To see this, we expand both
sides of (6) and we then have

J- t"e " 'V(t)dt=e"', n=0,1,... (7N
(4]

We conjecture that no summable function f(#) can satisfy
the following condition of constant moment:

fwt”f(t)dt=c¢0, n=01,... (8)
0

Clearly, the nonexistence of the potential ¥(¢) in (7) is a
particular case in (8). However, if ¢ = 0, then there does
exist a summable function satisfying (8). For instance, the
function (see Shohat and Tamarkin,® p. 22)

() = (sint "*exp( —t /%),

is summable and satisfies (8) when ¢ = 0.

Of course, if we consider the distribution du (¢) in place
of the density f(¢)dt, then there does exist a distribution sat-
isfying

0<t< 0,

f t"du(t)y=c, n=0,1,.. 9)
0

In fact, we can define the point mass: u(1) =¢, #>1, and
p1(t) =0,t <1, then (9) obviously holds.

We now explain the reason for our conjecture with re-
gard to (8). More precisely, we shall prove that no potentials
with compact supports can satisfy (8). Suppose on the con-
trary that there is such a potential V' (¢) = 0, #>T, satisfying
(8). Then we have

T
J t"V(t)ydt =c#0, n=0,1,.. (10)
o

Subtracting two consecutive terms in (10) gives
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T
f t"(1—=0)V()dt=0, n=0,1,...
o

It follows from the Miintz—Sz4sz theorem (see Rudin,'° p.
304) that (1 — ) ¥V(¢) = 0 or ¥(r) = 0 holds almost every-
where on (O, 7). This in turn implies that ¢ = 0, a contradic-
tion. We thus conclude that no potentials with compact sup-
ports can satisfy (8).

We note that the above assertion can also be proved viaa
different approach (Ref. 9, p. 5). Also note that some exten-
sions of the Miintz-Szasz theorem with regard to the com-
pleteness have been done by the author.!!

In closing this note, we finally pose the following mo-
ment problem: What is a necessary and sufficient condition
on a sequence {u, } of real numbers such that there is a
potential V(z) satisfying

f t"Vitydt=pu,, n=01,,.7
0
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The trilinear commutation relations involving coordinates and momenta introduced by Wigner
[E. P. Wigner, Phys. Rev. 77, 711 (1950) ] are generalized to three dimensions. It is shown
that the only realizable coordinate space representation of the momenta implies the usual

bilinear commutation relations.

I.INTRODUCTION

It is well known that in quantum mechanics trilinear
commutation relations involving coordinates and momenta,
rather than the usual bilinear ones, can be introduced for a
one-dimensional harmonic oscillator.! A nontrivial coordi-
nate space representation of the momentum operator neces-
sitates the use of wave functions that are not analytic in the
usual sense. It seems worthwhile to investigate whether simi-
lar conclusions are imperative for the same problem in three
dimensions.

The trilinear commutation relations for the one-dimen-
sional oscillator follow by requiring that the equations of
motion obtained from the Heisenberg equations are the same
as the classical ones. The trilinear relations thus obtained are

lg.{q.p}]1 = 2ig, [pAgp}]1 = —2p, (1)
where the brackets { } and [ ] refer, respectively, to an anti-
commutator and a commutator. Yang® found the coordinate
representation of the momentum operator p,

p=—iLt 4 iER, 2)
dq q
where Cis a real constant, and R the inversion operator, i.e.,
RR'= —q, R-Lp-1=_2 (3)
dq dq

In trying to solve the oscillator problem with the representa-
tion (2), Yang concluded that C must be zero if one requires
the wave functions to be analytic. Ohnuki and Kamefuchi,>*
by introducing generalized functions, or “hyperfunctions”
as wave functions, solved the oscillator problem with C #£0.

Il. TRILINEAR COMMUTATION RELATIONS IN THREE
DIMENSIONS

We now consider what generalizations can be made
when three degrees of freedom, rather than a single one, are
involved. We, therefore, consider a three-dimensional oscil-
lator with the Hamiltonian

H=%z(pi+xi). 4)
k

Here, and subsequently, all the indices run over the values 1,
2, and 3. The demand that the classical equations of motion
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follow from the Heisenberg equations leads to the trilinear
relations

[xk :{ank}] = 200y X,, [Pk >{x1’Pk}] = —2i6yp; - (5)
We assume relations more general than the ones above
and write

(1) [xeApix, ] = 2i8,x,, ,

(i) [pe{xpn 3] = —2i64p,, ,

(i) [pe,{xixn}] = — 2i8yx,, — 2i81mx;

(V) [%,Ap1Pm ] = 2i61:D s + 2i1,p; - (6)

Not all of the above relations are independent. In fact, (iii)
and (iv) follow from (i) and (ii), respectively, by using the
(generalized) Jacobi identity. If we now introduce the oper-
ators a, and a} defined by

a,=(1/V2)(x, +1ipy), at=(/V2)(x, —ipy),  (7)

the relations (6) become in terms of these operators,
[a:.{a],a,,}] =264, ,
[a..{a],al,}] = 26,4af, + 28,,.4], (8)
[ax.{a,a,}] =0.

These are the well-known trilinear relations for the creation

and annihilation operators for a system of para-Bose oscilla-
tors.’

1. COORDINATE SPACE REALIZATION

To find the coordinate representation of the momenta p,
satisfying the trilinear relations (6), consider the operator

Sy=[x.p;] — 6y . 9)
Therefore
S}} = —-5;. (10)

Then using the relations (6), we have
{pk,S,-j}={xk,S,-j}=O. (11)

Taking the matrix element of the second relation of (11)
between the states |X') and |[X"), we get

(?c’]{xk,S,.j}{X‘”) = (xy, +x,’;)(5c"|SU x"»=0. (12)
Or,
© 1987 American institute of Physics 1290



(X'|8;1X") = 2iC; (X)6(X' +X") , (13)

where the 2/ has been introduced for convenience. Thus

S; = 2iC;(X)R . (14)
Here R is the inversion operator, i.e.,

RY(X)=V¥(—X).
We also note, using (10),

C¥X)=Cy(—Xx). (15)

The matrix element of S; is also given by
(X,\/| |-‘II>____(xil_x{})< IPJ|AH
=2C,;(X")6(X" +Xx"),

using (9) and (13).
We therefore have

— i8,8(% —%")

iC;(R)8(F +3")

Xx;

-‘Il —_ __6 “II
X'lp;|x") = laxj (x )+ ,»

+ B (X)8(F —3") ,

where we have used

(16)

X; 9 5(x) =
X
Here B; (X') is an arbitrary real function as p; is Hermitian.
Since the right-hand side of (16) cannot depend on the index
i, C; (X") must be proportional to x;. Now, from the require-
ment of the correct transformation properties of p; under
rotations, we must have

5,8(%) .

Cy (&) =xxf([X]), B, (%) =x,g(|%]) . (a7
Hence we have from (16),
(Z|p,|¥) = —ii\lf(?c) + ix,f(|X])¥( —X)
ox;
+x,g(|XDY(X) , (18)
whence,
p = —ia%-}-ixjf([)ﬂ)R +x,g(%]) . (19)

J
We know, however, that the arbitrary function B; (X)in
(16) can be gauged away with a unitary transformation if
the integrability condition dB;/dx; = dB,/dx; holds. We
find from (17) that this condition is obviously satisfied. It is
easy to see that under this transformation C; (X) - C [ (X)
which also satisfies (15). The argument leading to the ex-
plicit form of C;; in (17) also holds for C ;. Therefore we
have
g = —iZL i )R (20)
/ ox;
The form of fcan now be determined from the first of the
relations (10). We have, using (14),

v ,s,,}:{_z

+ ix fX))R, 2C,(%)R } -
k

(21)
This gives, finally,
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Bur TR + B fDR + 3,3, =2
k

(22)
Or, since R ! = R exists,
Sux fUX|) + 8ux.f([X]) + | I a7 |f(|x|) =0. (23)
X
Equation (23) has the solution
SUX)) =cb6(|X]) . (24)

This does not contribute to p; as x,6(|X|) = 0. Therefore we
have for the coordinate representation of the momentum
operator,

. d

s = = ] ——
bi ox,

It is clear that this representation necessarily implies the
canonical bilinear commutation relations between x and p.
This, of course, does not rule out the possible existence of
other inequivalent representations. In fact, the usual para-
statistics does provide a representation of trilinear commu-
tation relations in terms of the so called generalized Bose
numbers (see the Appendix). We therefore conclude that
the generalization of Wigner’s trilinear commutation rela-
tions for coordinates and momenta does not admit a nontri-
vial coordinate representation in three dimensions.

(25)

IV. CONCLUSION

To summarize, in one dimension a nontrivial coordinate
representation of the momentum operator satisfying trilin-
ear commutation relations is possible at the expense of intro-
ducing generalized functions as wave functions. A general-
ization to three dimensions shows that the only realizable
coordinate space representation of the momentum operator
implies the usual bilinear commutation relations. In Schro-
dinger quantum mechanics, therefore, there is no place for
trilinear commutation relations in three dimensions.
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APPENDIX: GENERALIZED BOSE NUMBER
REPRESENTATION

Representations of trilinear commutation relations exist
in terms of generalized Bose numbers* which are the analogs
of Green components.® Let

P d r a
X = Xx; an = —1i R
k agl k Pr P

where

g x?t =0, a#B, [xixi]=0,
and

Ja ad
0, a#p, [ =0,

{8xk 3xﬂ} oxg 8x,

with
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The problem of the scattering of an electromagnetic plane wave with arbitrary polarization and
angle of incidence from a perfectly conducting spherical shell with a circular aperture is solved
with a generalized dual series approach. This canonical problem encompasses coupling to an
open spherical cavity and scattering from a spherical reflector. In contrast to the closed sphere
problem, the electromagnetic boundary conditions couple the TE and TM modes. A
pseudodecoupling of the resultant dual series equations system into dual series problems for
the TE and TM modal coefficients is accomplished by introducing terms that are proportional
to the associated Legendre functions P, ™. The solutions of the TE and TM dual series
problems require the further introduction of terms proportional to P, ™, where O0<n < m.
These functions effectively complete the standard spherical harmonic basis set when an
aperture is present and guarantee the satisfaction of Meixner’s edge conditions. Having
generated the modal coefficients, all desired electromagnetic quantities follow immediately.
Numerical results for the currents induced on the open spherical shell and for the energy
density of the field at its center are presented for the case of normal incidence.

. INTRODUCTION

The number of electromagnetic boundary value prob-
lems that can be solved exactly is rather smali, especially in
three dimensions. The desire and the need for these canoni-
cal problems, however, is very strong. They reveal the basic
physics underlying the phenomena and help establish in-
sights that can usuaily be extrapolated to more general situa-
tions. Moreover, they act as valuable test cases for general
numerical approaches to related problems.

The scattering of an electromagnetic plane wave from a
perfectly conducting closed sphere is probably the best
known three-dimensional canonical scattering problem. Its
generalization, the scattering of a plane wave from a perfect-
ly conducting spherical shell with a circular aperture, is im-
portant from both theoretical and practical points of view. In
particular, when the circular hole has a relatively small an-
gular extent, this problem allows one to study the coupling of
a wave from an external source through an aperture into an
enclosed region. On the other hand, when the shell has a
relatively small angular extent, the problem describes the
scattering of a plane wave from a sphericali reflector. A com-
plete solution to this canonical mixed boundary value prob-
lem is given in this paper.

A Debye potential formulation is employed, but in con-
trast to standard treatments in spherical geometries, the as-
sociated Legendre polynomials of negative order (P, ™,
n>m) are utilized for the modal expansions. Enforcement of
the electromagnetic boundary conditions leads to a coupled
set of dual series equations for the TE and TM modal coeffi-
cients of each azimuthal mode. A pseudodecoupling ansatz
is developed to allow separate treatment of the TE and TM

*) Present address: Division 1265, Sandia National Laboratories, Albuquer-
que, New Mexico §7185.
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dual series systems. It requires the introduction of terms pro-
portional to the associated Legendre polynomials P; ™ (m
being the azimuthal mode number) which are homogeneous
solutions of the boundary condition equations. Solutions of
the resulting “uncoupled” TE and TM dual series systems
are given. They require the further introduction of terms
proportional to the associated Legendre polynomials whose
degree is less than its order: P, ™, where 0<n <m. These
terms guarantee satisfaction of Meixner’s edge conditions
and effectively complete the spherical harmonic basis set in
the presence of the aperture. Infinite systems of Fredholm
equations of the second kind for the modal coeflicients are
obtained. A rigorous truncation procedure is given that
leads to a straightforward numerical evaluation of those co-
efficients. Results for the currents induced on the open
spherical shell and for an energy density ratio as a function of
the fundamental parameter ka (27X radius/wavelength)
are presented for the case of normal incidence. It is shown
analytically that the behavior of the currents near the edge of
the aperture are in agreement with Meixner’s edge condi-
tions; the graphical results further confirm this. The energy
density scans highlight the resonance features of the cou-
pling physics.

This paper is organized as follows. In Sec. II the coupled
dual series systems are derived for the scattering of a general
plane wave from an open spherical shell. The decoupling
ansatz is presented is Sec. 111, and the resulting TE and TM
dual series systems are solved in Sec. I'V. The results are then
restricted to the normal incidence case in Sec. V. In Sec. VI
the currents induced on the open spherical shell are given for
various values of ka, aperture size, and the two allowed an-
gles of incidence. Their modal structure is exhibited with a
set of three-dimensional color figures. The energy density
scans are discussed in Sec. VIL
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There have been several reports of solutions to the nor-
mally incident case of the open spherical shell problem from
both analytical'~'* and numerical''~'* points of view. In the
numerical papers, various convergence problems and erro-
neous results are encountered. Of the analytical papers only
Ref. 9 seems to lead to correct results for the scattering prob-
lem. Unfortunately, direct comparisons for that case are dif-
ficult because the dual series systems and their solutions
(which were checked with our validation scheme) differ
from those obtained here and no current or field values were
calculated there. Moreover, the basic tenets of Ref. 9 appear
to be restricted to the normal incidence case. The errors in
Refs. 1-8 and 10 are either that the dual series systems were
solved incorrectly or, more fundamentally, that the wrong
dual series systems were solved. The latter stems from the
erroneous assumption that the TE and TM dual series are
completely decoupled. This error is identical to the one made
by Meixner in his original Debye potential solution to the
scattering of a plane wave from a circular hole in a perfectly
conducting ground plane.'® In analogy with our approach,
Meixner corrected that error in Ref. 17 by introducing addi-
tional potentials that were homogeneous solutions of the
equations resulting from enforcement of the electromagnetic
boundary conditions. The coefficients of these potentials
were chosen to guarantee that the fields satisfy the correct
edge behavior, hence accounting for the presence of the aper-
ture. The pseudodecoupling ansatz can be shown to be
equivalent to a gauge transformation, which in analogy with
Dirac string analyses, involves discontinuous potentials, the
gauge conditions being identical to the pseudodecoupling
constraint conditions."'®

The results for normal incidence were closely compared
with those generated with a general, numerical surface patch
scattering code; and these comparisons were reported in Ref.
19. The agreement is excellent; and since that code has been
validated with a variety of different scattering problems, this
lends further credence to the validity of the solution present-
ed below. The present work represents a generalization of
related aperture coupling work®®?* to three dimensions. A
more detailed presentation is available.” It includes many
complementary results that were omitted here simply be-
cause of length considerations.

Il. REDUCTION TO COUPLED DUAL SERIES PROBLEM

Consider the problem configuration shown in Fig. 1. A
perfectly conducting open thin spherical shell is represented
by the surface r = @, 0<8 < 6, in the spherical coordinate
system (r,0,¢) erected at the shell’s center. The negative z
axis of that system passes through the center of the aperture,
the latter being defined as {(r,6,8)|r = a and 6, <6<~}
The opening angle of the aperture, 6,,, is defined simply as
8., = m — 6. The medium inside and outside the shell is
free space. The unit vectors (7,6,¢) are defined in the stan-
dard manner in the directions of positively increasing coor-
dinate values.

Mathematically, we are seeking, for an arbitrary inci-
dent plane wave, the ficld scattered by the open spherical
shell. This scattered field must satisfy the Sommerfeld radi-
ation condition as r— <. The total field (incident + scat-
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Line of
sight

FIG. 1. Configuration of the scattering of an arbitrary plane wave from a
spherical shell having a circular aperture.

tered) must satisfy (1) the electromagnetic conditions,
E,,, = 0on the metallic shell and H,,, continuous over the
aperture; and (2) Meixner’s edge conditions,'”*° i.e., the

total energy of the field must be finite near the aperture rim.

A. Debye expansions

A plane wave with electric field strength E, is incident
on the open spherical shell. It is characterized by a wave
vector k, which for convenience is assumed to lie in the xz
plane; an incident angle 8 ™ with respect to the z axis so that
k-2 = cos 8™ and a polarization angle ¢ between E and the
projection of the positive z axis on the incident wave front.
The incident field has the form

{ gine } - Mr{(cos '//)?o — (sin ¢)¢ASO} 2.1)
ZpE) (sin ¥)6 + (cos P)go)”

where 90 and zzo are the incident polarization vectors and
where, as throughout this paper, an ¢ ~ " time dependence
has been assumed and suppressed. The free-space impedance
Z, is related to the free-space admittance Y, = (e/u)’’? as
Z, =Y 'and the wave number k = w(eu)'/?, where € and
1 denote, respectively, the permittivity and permeability of
free space. The incident field parameters are indicated in Fig.
1. The incident electric field is polarized perpendicular to the
edge of the aperture when ¢ = Qand is polarized parallel to it
when ¥ = 7/2. Since any incident plane wave can be re-
duced to a linear superposition of these waves, only they
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TABLE L. The electric and magnetic field components in spherical coordi-
nates in terms of Debye potentials.

1 (o }
E = —— I~ 4 Kk} (r¥
’ lme[arz+ ()
2
E, = — 1 r® .1 a (")
rsin @ 6¢ (tcue)r ar o6
1 4 1 a2
E,=——(r®P)~————— rv
¢ rz?B( ) (ia)e)rsin@&raqﬁ( )
H, = ——1——{——+k2](r¢)
iop
2
Hy=—1_ 2 o)L __2 (0
rsin 6 d¢ (iwp)r dr o0
1
H‘=__]_._a_.(,—\p) SR S (r o)
r 06 (iwp)rsin 8 9rdd

need to be addressed explicitly. Moreover, with the intrinsic
symmetry of the field components in Maxwell’s equations,
the ¥ = 7/2 case is readily obtained from the ¥ = 0 case.
Consequently, we restrict our considerations to the ¢ =0
case with no loss in generality.

Following standard analyses of problems in a spherical-
ly symmetric geometry, we employ a Debye potential for-
malism.?’ In particular, the electric and magnetic fields
are expressed in terms of the two vector potentials ®r and Wr
as

E = — curl(®r) — (iwe) ~! curl curl(¥r),
H = + curl(¥r) — (iwu) ! curl curl($r),

(2.2)
(2.3)

where the radial vector r = r#. Their components are given
explicitly in Table I. The scalar functions ¢ and ¥ may rep-
resent any combination of the incident and scattered fields.
The function @ defines the field TE with respect to r, ¥ the
field TM with respect to r. The descriptor *“‘with respect to #”’
is assumed and suppressed throughout the rest of this paper.

The spherical wave expansion of the incident field (2.1)
with ¢ = 0 given, for instance, in Ref. 30 or Ref. 31, can be
generated with the Debye scalar potentials, ®™ and W™,
defined below. Since the scattered potentials, & and ¥*, as-
sume an analogous form, we have

(q;:) = —kE, i ((::c)sm mo,
(\]\/;C) = Yok, i (::C)cos meo,

m =0

(2.4)

2.5)

where the azimuthal modal coefficients

. - {mP™(cos 9‘“)] .
QN = an | ——————— 1 j. (k)P " (cos §),
ngm Y [ sin 0 e / r) (c
(2.6)
pine = i ymn{—(iP:‘)(cosem)ﬁ
n=am (70
X (kr)P =" (cos 8), (2.7)
© Ja (kR (ka) (r<a),
= P—m
o ,.ZMA"'" 8 (COSH){jn(ka)h,.(kr) (r>a),
(2.8)
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= i B,.P.™(cos8)

[jn(kr)[kah,,(ka)]' (r<a), (2.9)
[kaj, (ka) Y'h, (kr) (r>a), '

where

Yon = (= D" 5" [(2n+ 1) /n(n + 1)]€, (1= 8,).

(2.10)

The terms j, and h,, are, respectively, the spherical Bessel
and Hankel (of the first kind) functions of order n. The
associated Legendre polynomials of degree n, order + m,
are denoted by P * ™. The prime in an expression {xf, (x) ]’
denotes the derivative with respect tox. The term¢,, = 2 for
m#0 and €,, = 1 for m = 0. Kronecker’s delta §; = 0 for
i#jand §; = 1 for any . Because the term corresponding to
both m = Qand n = 0 is identically zero in the incident field,
we set the corresponding scattered potential coefficients
identically to zero: Ay,=B,,=0.

These representations of the interior and exterior scat-
tered potentials have been chosen so that ®* and d, (r%°) are
continuous at r = a, thereby ensuring the continuity of the
tangential scattered electric field components £, and E,
across that surface. The resultant fields satisfy Sommerfeld’s
radiation condition; the dependence of the scattered fields on
h, (kr) for > a ensures their decay to zero as r— co. The
modal coefficients 4,,, and B, are the quantities that must
be determined.

B. Electromagnetic boundary conditions

The electromagnetic boundary conditions: E,, = 0 on
the metal and H,,, continuous in the aperture, are now en-
forced. Referring to Table I, £, = 0 on the metal if

cos —_— (D D)
,,,zzo m¢[sin 9(

Y, 1 3°

iwe r drdl
E, = 0 on the metal if

[rewme 4 w;)]} =0,

= .
3 sin m) — —— (@0F + P,
PN ¢{ ae(

Y, m d
iwe rsin @ dr

L{r(we+ v, )]] =0,

r=a

H, is continuous across the aperture if for €0

Z sin m¢[ m0Y° (Wine 4 95 )
m=0

. N r=d-+4 €
[F(Pme + Gbi,,)j] -0,

r=a- €

1 1 9%

iwg r drdo
and A, is continuous across the aperture if for € -0

i cos mqﬁ[ - Yo—q— (Pire + W5 )
m=0

r=a-+ €
9 1r@ne 4 @, )1] —0.

r=a—§&

1 m

iopg rsin@ ar

Because the azimuthal eigenfunctions sin m¢ and cos mé
form an orthogonal set over [0,27], these conditions must
be satisfied on a mode by mode basis. They require satisfac-
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tion of the following coupled set of dual series equations for the modal coefficients 4,,, and B,

ka3 {Apn o (kaVh, (k@) = f, }mP =™ (cos )

n=m

=5in03dp S {Bon [kaj, (ka)]'[kah, (ka)]' — g, }P 7 "(cos 6) (0<B<0p), (2.11a)
S A mP"(cos8) = —ikasin0d, S By, PIT(cos8) (6,<0<m), (2.11b)
ikasin 03, S {Apn ju (kadh, (ka) — £, YP ™ (c0s 6)
= 3 {B,.[ka, (ka)]'[kah, (ka))' — g, }mP 7" (cos8) (0<6 <6y, (2.12a)
003, 3 AP "(cos0) = —ika 3 B,mPI"(cos8) (8,<6<m), (2.12b)
U
where where the operator
Soin = Voun [MP ] (cOS 6'7) /sin 6] j, (ka), (2.13) L e=(sin83d,)(sinBd,) —m> (3.2)
. . 32
g =y [( 539_ P,,"‘)(cos einc)] [kaj, (ka)]'. (2.14) They have the integral represenztatllzns o
P m™(cos @) = (— 1)’"(»—) _
Equations (2.11) result from the E, and H, boundary con- 7/ T(m+})
ditioys and are naturally paired because their 8 and ¢ depen- ¢ cos[(n + 1)t )dt
dencies are the same; Egs. (2.12) result from the £, and H X Iz (3.3)
é 6 o [cost—cosB)

boundary conditions. The absence of any spherical Bessel or
Hankel function in (2.11b) and (2.12b) results from appli-
cation of the modified Wronskian relation

Jn () [xh, (X)] = A, (X)[Xj, (x)} =i/x.
Note that 9, =0 /90.

(2.15)

Ill. PSEUDODECOUPLING ANSATZ

In the problem of plane wave scattering from a solid
sphere it is known?’ that the TE and TM portions of the
problem may be decoupled. Satisfaction of independent
boundary conditions applied directly to the TE and TM De-
bye potentials leads to series defined over the entire 8 inter-
val, [0,7]; and orthogonality arguments then produce a
complete decoupling. Introducing the hole results in mixed
boundary conditions over partial & intervals and a coupling
of the TE and TM modes. Nonetheless, one might anticipate
some form of TE/TM decoupling even in this case if the
proper set of basis functions were employed.

Consider the associated Legendre functions of negative
order P~ "(cos ). Forall » and m they are known indepen-

dent sojutions to Legendre’s equation®—*;

LoP 7™(cosf) = —n(n+ 1)(sin? §)P 7 ™(cos 6),
(3.1)

§

Lo S Ay (kadh, (ka) —frng}P 7 ™(cos 6) =0

o om

Note that our definition of P, " differs from that in Ref. 32
by the factor ( — 1)™. The related functions

P " (cos @)
=(—1D"*"P " "cos(m — 0))

1/2 m

=(_1),,,(£) csc™d
T I“(m-}-%)

XJW sin[(n—+—5)t]dt

o [cos@ —cost ]2~

3.4)

also satisfy (3.1). For n>m, these functions are identical by
the standard symmetry relation
P, ™(cos 8)=(—1)"*"P ~™(cos(m — 6))

=P "(cos 0). (3.5)

However, for 0<n < m, this relation no longer holds true. In
particular, P "(cos &) 1_s_ finite at & =0 but infinite at
8 = 7. On the other hand, P, "(cos 8) is finite at § = 7 but
infinite at 6 = 0. This behavior is immediately apparent for
n = 0 where

Py ™cos @) =[(—1)"/m!]tan™(8/2), (3.6a)

P;™(cos 0) = (1/m!)cot™(8/2). (3.6b)

Return now to the dual series systems (2.11) and
(2.12). They are self-consistent if

(0<6 < 6,);

Lo S B ikaj, (ka) ) [kah, (ka) )’ — g, }P =™ (cos 6) =0

n=m
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Lo i A,n P "(cos8) =0

. (Bp < 0<).
ZLe Y B, Py T(cos) =0

nA=m
Bounded homogeneous solutions of these equations are ad-
missible and are proportional to Py "(cos8) and
P ; ™(cos @) over their respective intervals. Solutions to the
TE dual series system

S {Appain (k@)h, (k@) — £, }P = " (cos 6)

n=m

=qa, Py "(cos @) (0<f<b,), (3.7a)

i A, P "(cos8) =@, P; "(cos ) (0,<b<m),
- (3.7b)
for m>1 and to the TM dual series system

S {B,, [kaj, (ka)]'[kah, (ka)]’ — g, }P ™ (cos 6)

n=m

=f,Ps "(cos ) (0<8<b,), (3.82)

S B, P "(cos 0) =B, Pg (cos6)  (6,<0<m),

(3.8b)

for m>0 are therefore solutions to (2.11) and (2.12) pro-
vided that the “decoupling” constants «,,,, f3,,, @,., and 3,
are constrained by those coupled dual series equations. Since

Pi ™(cos 0)} [+P0""(cos 6)

infd,|— _
sin B[Po_m(cose) — Py ™(cos 8)

], (3.9

the required constraint relations for m>>1 are simply

B, =ikaa,,,

@, = ikap,,.

(3.10)
3.11)

There is no m = 0 constraint relation because there is no
m = 0 TE dual series equation.

Consequently, although the TE and TM portions of the
dual series systems (2.11) and (2.12) have been decoupled,
the TE and TM modal coefficients are still coupled through
these “decoupling” constant constraint relations. This ex-
plains the connotation “pseudodecoupling ansatz.” The so-
lutions to the TE and TM dual series systems (3.7) and
(3.8) subject to the constraints (3.10) and (3.11) comprise
the desired result.

V. TE AND TM DUAL SERIES SOLUTIONS

The TE and TM dual series systems can be reduced to
more manageable and physically revealing forms with sever-
al manipulations. First, by introducing for n> 1 the functions
x2 and y? so that

(kaj, (ka)]'[kah, (ka) ]’
= —[n(n+ 1)/ika(2n + 1)]1(1 + y¥), (4.2)
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the dual series systems (3.7) and (3.8) can be rewritten as
» A
B R 29 )
2wy Y

=2ikaa,Ps " +2ka Y f..P," (0<0<6y),

no==m

S A P =T, Pe " (6y<6<7);
S 8, 2D (oo

" S n+1

= — 2ikaB, P5 ™ — 2ika

X Z gmnPn.m (O<0<60)1

> BoaP i " =B.P5" (6,<6<m).

As shown in the Appendix, in the quasistatic limit

lim y? =0+ #((ka)?), (4.3a)
ka--Q
lim y¥ =0+ &((ka)?). (4.3b)
ka--G

Thus, in analogy with the dual series treatments of the two-
dimensional slit cylinder coupling problems given in Refs.
20-23, the static terms have been extracted. These TE and
TM dual series must now be solved subject to Meixner’s edge
conditions; i.e., one must account for the singular behavior
near the rim of the aperture required by the finite energy
condition. The large n behavior of the solution coefficients is
responsible for this edge behavior. Since, as shown in the
Appendix, for large values of this index
lim y¢~2(n™?),

n— oo

(4.4a)

lim y¢~#(n™?%),

n— oo
the terms proportional to y¢ and y¥ are of order n~* smaller
than the static pieces. To enhance the isolation of the large
index behavior in the TM systems, we introduce the addi-
tional functions

Fr=nn+ D +x0/(n+4)7>—1
= — {1 + {4ika/(2n + 1)1 {kaj, (ka))’
X [kah, (ka)]'},
which exhibit the limiting behaviors

(4.4b)

(4.5)

lim = Z(n~?) and lim ¥= — (2n+1)7?,

- ka0
(4.6)
and rewrite the TM dual series systems as
$ Bu(r+)aszbr,
= — 2ikaf3,, Py ™ — 2ika
° (4.7)

vc

XS guPr" (0<0<8,),

noEm

i anPn_ ” =Bmﬁ0~m

n=m

{0y < B<m).
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We then treat the terms proportional to y¢ in (4.2) and 7? in
(4.7) as forcing terms by moving them to the right-hand
sides. This isolates the pieces responsible for the singularities
near the rim of the aperture on the left-hand sides. Defining
the forcing terms

F,. =2ikaf,, — [A,../(n+ 1) ]xe, (4.8a)
Gmn _— 2ikagmn _j./:f(n + %)an’ (48b)
the TE and TM dual series systems for m>1 become
& Amn
pP-"
n=mn+}

= 2ikaa, Py "+ S F,,P." (0<6<6,),
(4.9a)

(6, < 8<); (4.9b)

Ms 1t

El
I
3
o

= —2kaf,P5"+ S G P ™ (0<B<6,),
B (4.102)
J

J9(6’¢) =H¢<(a!0:¢) —Hj(a,ﬁ,gb)

_ { -~ YOEO} i cos mé i {Am" [M} + ikaB,,, [%P"_M(COS 9)”;
0

(ka)?
J,(0.¢) =H;(a,0,4) — Hj(a,6,0)

m= n=m

— [i_):l’g‘l} iosin m¢ "Smlfim,l {%P;'m(cos 9)} -+ ikaan [

(ka)* 1=

sin 6

S B, P "=B,Py" (6,<0<m). (4.10b)

n=m

Equation (3.5) has been invoked to convert the P, ™ to
their duals P ™ over the aperture interval. This form of the
dual series systems strongly suggests the solution process we
introduce below.

For m = 0, the TM dual series becomes

i B()n(n + _;—)Pn

n=1

= —2ikaBy+ 3 Go,P, (4.102')

n=1

(0<8 < by),

i By, P, =By, (8p<6<m), (4.10b')

n=1

since P% =P, , Legendre’s polynomial, and By,=g,,=0.

The singular behavior of the fields near the aperture rim
(0 = 6,) is reflected in the corresponding behavior of the
current components

(4.11a)

mP 7 ™(cos 0) ]]
e |} (4.11b)

sin 0

where, for instance, H ; (a,6,4) [H e (a,6,¢)] 1s the ¢ component of the magnetic field for r<a (r>»a) evaluated at » = a.
Because the angular dependence of the terms depending on 4,,,, and B, in these expressions is distinct, we use it to guide our
constructions of the physically correct TE and TM solutions. These solutions require several summation formulas:

i P "(cos 0)8{,0 cos(n + é—)ﬁo =0 (0gf<6,), (4.12a)
n=0
i P "(cos 6)3%, sin(n + -21-)6(, =0 (6,<6<m), (4.12b)
n=0
«© . oo __1 "IP -—m 6
S P m(cos gy Sn D0 _ (= D0 0co<6y), (4.12¢)
w=0 n+} n=0 n+}
© = P "(cos @
S B m(cosgy DO S PO g, (4.12d)
A=0 n+1 o n+d
) , [ P_m 0
S Prmeos ) BN _ gy § (1 Z D o000y, (4.12¢)
n=0 (n + %) n=10 3
which are derived from the basic expressions [see Ref. 36, Eq. (3.71)]
— 1™ /2 1/2 — oS 0 m--1/2
- | (— D™(w/2)""? [cos ¢ cor 1 (0<b<8).
2 P =" (cos @)cos{ n + > Y= L(m+1) sin™g (4.13a)
=0 0 (O<b<m)
(modified to our sign convention) and its dual
w i (O<¥ <),
Zﬁ‘m(cos 9)5in(n+»—)1/1= (7/2)'"?  [cos & — cos ]™ /2 (4.13b)
2 £ B<p<m),
n=0 2 r'im+1/2) sin™ @ v
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and the identities (see Ref. 36, 1.19 and 1.16)

o 1
S-S EDL_ T ogiem),  (4.14a)
n=:0 n+% 2

sin(n+ D8 _ T ocr<m). (4.14b)

zo n+% —_2—

n =

A. TE dual series solution

We would like to reduce the associated Legendre func-
tion dual series system (4.9) to one in sines and cosines. This
conversion would appear to be straightforward with the rep-
resentations (3.3) and (3.4) and with an interchange of the
summations and integrations. However, consider Meixner’s
edge conditions (see Ref. 26, Sec. 9.2), which, when applied
to the field generated by the TE Debye potential, imply that
as the edge is approached along the surface 7 = q,

H5(a,0,6)~3,(r®L)|, o~ (6, — )12,
Hé(a’09¢)~5,ag(’¢f"),r=a ~(90 - 9)‘]/2.

The corresponding portions of J, and J,; near 8 = 6, must
behave, respectively, as

o0

S AP " (cos 0)~ (6, — ) "7, (4.152)
S Ay 9P 7 "(c0s )~ (8o — O) %, (4.15b)

where m> 1. Analogously, the 8 dependency of Eq. (4.9a)
near 8 = 6, differs from that of (4.9b) by (6, — 6)*'. The
factor (n + 1)~ 'in (4.9a) is responsible for this difference.
Thus, with {see Ref. 37, (8.10.7) and (6.1.37) ]

lim P "(cos @) ~n~ "+ 12

5 cos{(n+ 1) — mm/2 — m/4)
(mrsin 8 /2)"?
and (4.13), Meixner’s conditions are satisfied if

H m—1
lim A4, ~n .

N-w oo

(4.16)

The simple summation—integration interchange is then not
directly permitted because it will introduce terms that are
proportional to delta functions and their derivatives; i.e.,
with (1.135) from Ref. 36 one finds, for instance, that near
6 =0,

i n’ cos(rz + —1«)9 cos(n + —1—)9(,~5”)(0(, - 8),
n-0 2 2

the jth derivative of the Dirac distribution. Interchange can
be accomplished by preconditioning the dual series as fol-
lows.

We need to introduce terms into (4.9) that will cancel
the potential delta function contributions. This is accom-
plished with Eqs. (4.12)~(4.14). In particular, we define the
modified solution coefficients

~ m_ 1 ; . 1 Amn (”>m>1)!
A4,, = a,, 3’ sm(n +——)6 +{
&, 0 2/ o (0<n<m),
(4.17)
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and the modified forcing term coefficients

E, =F,, (n>m=1), (4.18)
— (ka)? ™32 . cos{n+1)6,
—_ e—— a . a-’ _.__._.._2__—..
mn 2 JZO mj+1) ba (n 4 %)2
Fon  (n>m32),
4.18b)
* [0 (0gn<m), (
so that the TE dual series systems for m>1 become
= A
mn Pn__m
n=0n +%
o ( . l)nP;m
= 2ikaa, Py ™ + (a,, — k%) A
° ( ° n;o n +%
+ Y F..P7" (0<6<8,), (4.192)
n=0
S AP =@, P (Bg<0<m). (4.19b)
n =0 .
The constants
0, for m =1,
2
= (ka)” (m—6,)a,,;, for m =2, (4.20)
" 2

(7 —8,)a,, — ., for ms3.

The additional unknown coefficients a,, (j=0,
1,...,m — 1) provide the extra degrees of freedom needed to
remove the unphysical singularities and permit the desired
summation—integration interchange. In particular, their val-
ues will be fixed by our solution process so that for any m > 1

lim 4, ~&(n™"), (4.17")
lim F,,, ~&(n?). (4.18")

n— oo

Note that it can be inferred from the form of (4.19) that we
have completed the basis function set for this open geometry
by including the associated Legendre polynomials P =™ and
P77 for O<n <m.

Inserting (3.3) and (3.4) into (4.19) and interchanging
the summations and integrations, the desired TE dual series
are generated:

= A 1
): cos(n + -——) t
2

n=:0n+%

_ 7T

(a,0 — &%) + 2ikaa,, cos -é—

[ 38

+ n}i:o?mcos(n + %) t (0<t<6y), (4.21a)

S A, sin(n +—;~)t=5z,,, sin—zt—— (8, <t<m). (4.21b)
n=20

A solution of (4.21) is constructed as in Refs. 20-24 by first
making the metal and aperture equations display the same ¢
dependence. Two possibilities exist: integrating (4.21b) or
differentiating (4.21a). Only the former guarantees satisfac-
tion of (4.17'). Applying {7 dt to (4.21b) leads to the dual
series system
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T

i A cos(n+ l)t— 2
2

n=o 143 2&_ cos —
m
2

— (@0 — «&) + 2ikaa,, cos —;— + i Fm,, cos(n + —%—)t (0t < By),

n=20

(4.22)
(O < t<T).

Since the left-hand side of (4.22) is now defined over the entire [0,7] interval, Fourier inversion then yields the coefficients

A4

. . .
= (o — ) SRR+ ik, 22, )N + 260+ S FanAls (=010, (423)
where the inversion terms
sin(n — /)6, sin(n + 1+ 1)6
2 (* 1 1 [ (n——l ; n+l+1)0] (n#D),
AE = —f cos[(n + ——) 1&] cos[(l + ——) v,b] dy = i (4.24)
7 Jo 2 2 [60+51n(2l+1)60} n=1.
20+ 1

Explicitly, (4.23) means

'"E“:‘a 3 sin(/ 4 1)6,
= I+
= (2ikaa,, — 2, )AL + 2a,, 8, — K& i‘“—(;—*%l‘?&
+3
+ Y F, AL (I=01,.,m—1), (4.23")
n=>0

Am _ _’"i‘am. 3’ sin(/ + 1)6,
I+ =R [+

+ Qikaa,, — 2a&,, AL + 2a,,8,

S I o MY

I+% n=0
(=mm+1,.). (4.23")

Furthermore, inversion requires continuity of the right-
hand side of (4.22) across t = @,,. This yields

Ao = KL, _2 [(2ikaam - 2c'1’z,,,)cos%‘2
ks

+ Y F,, cos(n + —;—) 60]. (4.25)
n=20

The system (4.23) and (4.25) is an infinite system of
linear equations for the TE solution coefficients. The first
(m + 1) of these, (4.23") and Eq. (4.25), would not have
appeared without the introduction of the terms a,,;, ,,, and
a,; hence, the terms cos(n + 1)@ and sin(n + 4)6 for
n=0,1,.,m—1into (4.21). The A}, (/=0,1,..) terms
originate in this completion of the expansion. Moreover,
since there are no solution coefficients 4,,, (0<n<m) in
those first (m + 1) equations, we may view them as ortho-
gonality relations. They determine the interchange coeffi-
cients a,,; (j=1,..,m — 1) and a relation between the de-
coupling coeflicients «,, and @,,. In a similar fashion, the
TM case generates a relation between 8, and f3,,. The re-
maining two degrees of freedom are determined by the con-
straint refations (3.10) and (3.11). The coefficient a,,, is
defined by (4.25) and is coupled to all of the other a,,;
(j=1,..m—1) through the relation for
(2ikaa,, — 2a,,). However, it does not contribute directly
to the solution coefficients A4, (I =m,m + 1,...). It only
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r
provides that degree of freedom needed to insure continuity
across the boundary between the metal and aperture inter-
vals.

Equations (4.23) are solutions of the original dual series
(4.9) subject to Meixner’s edge conditions (4.15a). They are
general solutions if these results are independent of the de-
coupling and interchange constants. This has been con-
firmed numerically for m = 1,2,3. A rich set of new associat-
ed Legendre polynomial identities is obtained from this
validation process.”” We consider explicitly only the m = 1
relations since they are employed for the normal incidence
case discussed below.

For m = 1, the solution system

A o
I-:l = (2kaa, — 2a)AE + z Fl"Afl (I=1.2,.),
n=1
§ (4.26a)
0= (dikaa, 28 )Nk + 23, + 3 Fi Ak,  (4260)

n=1

gives the coefficients

A o0
5= 3 Pl +28LE (=12, (4278)
I n=1
where
Tiu = AL — A AL/ A, (4.27b)
LY = —AG/AG. (4.27¢)

Substituting these expressions into the m = 1 versions of
(4.92) and (4.9b), the original dual series system is satisfied
since on the metal (00 < 0,)

S TP =P —LEPT =0 (n=12,.),

=

(4.28a)
g . AL —1

S LyP T ———0—P5'=0, (4.28b)

=1

and in the aperture (6, < 9<)

PINCZE) ¥ e '=0 (n=1.2,.), (4.29a)

I=1
S @+ DLE-Ps' =0, (4.29b)

a1
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When evaluated over the metal interval (0<8 < 6,), the left-
hand sides of Egs. (4.29) yield Egs. (4.15).

B.TM dual series solution

We proceed as in the TE case. Consider the dual series
systems (4.10) and (4.10'). Meixner’s edge conditions ap-
plied to the fields generated by the TM Debye potential im-
ply that near 8 = 6,

H;(a’9i¢)~(r\pin)'r=a~(60_ 6
H;(a’9!¢)~80(r\p-:n)lr=a~(80— 0

Thus, from (4.11a) and (4.11b), the portions of J, and J,
generated by W}, near the aperture edge behave, respective-
ly, as

3
)+ /2’

)+1/2

i B,..P;™(cos 0) ~ (G, — 6) 2, (4.30a)
S B, 35 "™(cos 0)~(0,— 6)* %, (4.30b)

where m>0. Analogously, the 8 dependency of the metal
equations near 6 = ¢, differs from that of the aperture equa-
tions by (6, — ) . The factor (n + 1) in the metal equa-
tions is responsible for this difference.

The requisite edge behavior (4.30a) is obtained if

lim B,,, ~

n— oo
Consider first the cases with m > 0. Anticipating the effects
of the operator interchange, we introduce the modified coef-
ficients

m—2

(4.31)

the modified forcing term coefficients

Gpp =G,y (n>m=1), (4.33a)
~ ka 2m-2 sin(n + 1)6,
G ( z bm(]+1) a'g.,—L‘O'
n+i
Gn  (n>m>2),
4.33b)
+ {0 (0<n <m), (
and the constants
0, for m =1,
= . 433

o {[(ka)2/2lbm1, for m>2. (4.33¢)

The interchange constants b,,, (j=0,1,...,m — 1) will be
adjusted so that for all m>1

lim B, ~&(n™?), (4.32)
lim G, ~&(n™3). (4.33")
The dual series systems (4.10) become
z( )B P
= —2ikaB, Py ™+ i GpuP 7™ —
n=0
xS (D" 0<<) (4.342)
H=0 n ‘+‘Ji o '
o __ - _ oo P”—m
Z B,, =B P5 " by Py (8, < B<m).
= n=0
: (4.34b)

Introducing (3.3) and (3.4), interchanging summa-

"‘i' b, &, cos(n + 1)6, i {an (n>m>1), tions and integrations, and applying the operator f; dt to
i +1 0 (0<n <m), the resulting metal equation to attain similar ¢ dependencies
(4.3 for both equations, the TM dual series prior to inversion are
i
— 4ikaf3,, sm-2—+ 2 sm(n—{-%)t—x,’,,’lzr—t (0<t < 6y),
S B, sin(n +—;—)t= Aom+) (4.35)
n=2~0 Bm Sini“*"bmol (00<t<77').
2 2
Introducing the terms
£, .
° 1 sin(/ +1)6, cos(!+1)8,
(9)=f tsm(l+—)t= 2.0 @ 2 (4.36)
Hi\Yo A 2 (+1)? () I+
1 [sin(n— 16 si +141)68
L[ = 8 _ st S
_ J"” 1 szm{(l )¢1d¢~ T n—1 n+l+1 (4.37)
A% = sm n+ 3 + _1‘{9 _sin(21+1)90] o '
ml’ 2A+1 | o
i
Fourier inversion leads to the coefficient expressions for  These contain explicitly 7 orthogonality relations
m>1~ mz—lb j OS(I+ )60
B, = — (4ikaB, + B, )AL + B, ™ I+ )
- -
Lb, S+ Z)0 i, (6y) — (4ikaB,, + B..) Ao + Brnbor .
1
o O : + b COS(II +;)60 KE1,(8,) + E A
mAR S (1=0,1,..). (4.38a) + 3 +1
n=o N 41 (I=0,..m—1), (4.38b)
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and the coefficients
Bml _= — (4lka,3,,, +Bm )Ag +Bm501 _Klr:l'tl(eo)

m—1 . 1 e G
—'S b, 3% —-2~—°°S(l+l 2% T AR
j=1 141 Aol +3
(I=mm+ 1,...). (4.38¢)

Continuity across ¢ = 6, of the right-hand side of (4.35)
gives

bo= — K0, — = [(4t'ka/)’,,, + B, )sin%ﬁ
m

= Gy 1
— Z sm(n + -—-—) 6ol . (4.39)
n=0 N + é 2
Note that b,,, does not contribute directly to the solution
coefficients B, (I =m,m + 1,...).

Equations (4.38) are general solutions of (4.10) subject
to Meixner’s edge conditions (4.30b). As with the TE case,
this has been confirmed numerically for m = 1,2,3. Explicit-

ly for m = 1 the resulting solution system

_ = G,
B, = — (4ikaB, + BOAG + Y —— Al
n=1HR + %
(I=12,.), (4.40a)
_ _ = G,
0=pB, — (4ikaB, + BIAYG + Y J‘r% AL (4.40b)
n=1MN 5
yields the coefficients
oo G n _
B,=3Y —=T{, +BLY (I=12.), (44la)
n=1 N +:12
where
i = An = AGAG/ AL, (4.41b)
H= _AB/AE. (4.41c)

Satisfaction of the m = 1 versions of the original dual series
system (4.10) is guaranteed since on the metal (0<0 < 6,),

S @I+ PP — 2n+ P!

I=1

—LEPs ' =0 (n=1.2,.), (4.42a)
- Hp —1 A{,’O —1 ~1
S @+ DLEP ' — Py'=0, (4.42b)
= A
and since in the aperture (8, < 9<),
S i Pr'=0, (4.43a)
I=1
S LiP ' —Pg'=0. (4.43b)

I=1

Finally, consider the m = 0O case. Introducing the modi-
fied coefficients

- B =0
o =g §:>1>,)’ (4.44)
and the modified constants
B o = Bo — Boo/4ika, (4.45a)
B4 =Bo+ Boo, (4.45b)
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the dual series system (4.8") can be rewritten as

i (n + —;—) By, P, = —2ikaByPy+ 3 Go,P,
0

n= n =1

(0<6 < 6,), (4.46a)

S Bo,P, =BsPy (6,<0<m). (4.46b)
n=20

Our TM solution process leads to the solution coefficients

= @
Bo = 3, ni", ré, (=12.), (4.47a)
n=1 3
where
1 1
Fo = Aai = w Ao (4.47b)
and the constant
— © GO
=" "~ Foio- 447¢
Bo i n +% 0,10 ( )

The remaining constant 3, follows immediately from the
continuity condition:

Go. sin(n + 1)6,
sin 0,/2
(4.48)

(4ikaBy + B o) =dikafy + By = 3

n=1 n+%

C. Coupled TE and TM solution systems

The modal coefficients of the original electromagnetics
problem can now be constructed from the TE and TM dual
series results. The TE solution systems for m> 1, (4.23), are
still coupled to the corresponding TM solution systems
(4.38) through the constraint relations (3.10) and (3.11).
For m = 0 only TM coefficients exist, and they are generated
from (4.47). For each m an infinite linear system of the form
(an invertible Fredholm system of the second kind)

o0

VmI + 2() ‘ﬂm,nl an = z L‘/V‘m.n[ Wmn

n=0

(/=012,.)
(4.49)

is obtained and must be solved. A solution process analogous
to the one developed in Ref. 20 can then be applied.

The infinite linear system (4.49) is reduced to a finite
one by recognizing that as n — o several terms rapidly go to
zero. In particular, the TE and TM solutions have been con-
structed so that for all m

im A, ~O(n7), (4.50a)
lim W, ~&(n™=¥*~"), (4.50b)

Let us assume that N unknown coefficients are desired:
V. 15 Vin- Truncation then occurs in (4.49) after the N th
term and the following square system results:

N

N
V'"I + Zol’"»"’ V’"" = 2 <7 m.nl an (l= 0,1,...,N).

(4.51)

This system can be solved numerically, for instance, by
Gauss elimination. Any additional coefficients can then be

n=0
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generated recursively from (4.51) by setting [=N 41,
N+2,.L.

To illustrate this procedure, consider the m =1 case.
Introducing the terms £ = — B, 1 = a, f,, = 2ikaf,,, &,
= — 2ikag,,/(n+1), and A, =4,,/(n+ 1) and com-
bining the constraint conditions (3.10) and (3.11), the or-
thogonality relations (4.26b) and (4.40b), and the coeffi-
cient expressions (4.27) and (4.41), one obtains the solution
system (/ = 1,2,...)

Z Fllg.nl .717”

n=1

(2ikal ¥)E + Ay + 3 (TEA,, =
n=1

(4.52a)
(LE+ B, + Z (xiTH.)B,, = > T &
n=1 n=1
(4.52b)
[2ika(1 — Ag) ]€ + ( — 2ikaAgy)7
+ i (WAL, = 5 AL T, (4.52¢)
n=1 n=1
(1= AE+ [ —4(ka)* Al |
+ 3 WADB, = S AL g (4.52d)

n=1 n=1
These equations clearly are coupled and take the form of
(4.49). The infinite system (4.52) is reduced to a finite one
by noticing that

lim y2TE,, ~ hm YiTe  ~0(n~3), (4.53a)
lim £, ~ lim g, ~F(n= 712, (4.53b)

Assuming that the coefficients 4,, and B,, are desired for
n = 1,...,N, the truncated solution system is

sm—— N -
(2ikaLl $)E+ A, + Y (TEDA,,

n=1

N —
= 2 r'f:.nlflln (l= 1’2""JN)’ (4.543,)
n=l
N
(LIEI)§+BII+ Z (i/:‘r{i.nl)Bln
n=1
N
= 3 Piug, (=120, (4.54b)

[2ika(1— AE) € + ( — 2ikaA)n + Z (Y*AENA,,

n=1

N
2 AL Fins (4.54¢)

— Ax)f + [ —4tka)’Ad I + Z (X Am0) B,

n=1
i ‘ (4.54d)

Numerical results generated from this system will be pre-
sented below.

V. NORMAL INCIDENCE CASE

The plane wave is normally incident when 8™ =0 or
0™ = 7. The 8™ = 0 geometry is illustrated in Fig. 2. The
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FIG. 2. Configuration of the scattering of a normally incident plane wave
from a spherical shell having a circular aperture: (a) side view, (b) top
view.

restriction to normal incidence provides a great simplifica-

tion because
mP 7 (cos ) .
_— (6 = @ = O)
sin @

= { +—(%P:,"(cost9)} (6=0"=0)

_ nn+1) 5
2
[mP,,”‘(cos )
sin @

ml (51)
] (6=6inc=77)

= [ —-%P;”(ces&)} (0=6" =)

yn(n+1)
2

As a result, the potentials reduce to single sums involving
only the m = 1 azimuthal mode:

(ﬂ)inc ¢inc ]
(d)‘): —Eo(q)ls] )sm¢,

(3)- ()

Consequently, the coupled dual series systems for normal
incidence coincide with the m = 1 case treated in Sec. I'V; the
modal coefficients 4,, and B,, are numerically generated
from the solution system (4.54) with '™ = O or 7. The field
components for normal incidence in terms of these coeffi-
cients are listed in Table II for convenient reference. These
expressions 1solate the coefficients, the r, the 6, and the ¢
dependencies; hence they are very useful for current, energy
density, and cross section calculations.

Animportant analytical property of the dual series solu-
tion 1s simply revealed by the normal incidence case results.
This is its trivial recovery of the scattering coefficients for the
closed sphere case when 6, = 7. Let 8™ = 0. The terms

AEH (G, =m) =6,, (5.4)

=(—-1"" 8- (5.2)

(5.3a)

(5.3b)
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TABLE II. Electric and magnetic field components for normal incidence.

Field components

Z,(kr)
P '(cos B)cos ¢

E =E, S in(n + Dr,
=1

- keZ, (k
Ey=E, S [0',,,2,, k)5, (6) — ir,, -[—'—(—’)i B, (6)]cos P
n—1
- krZ, (k
E,=E S {a,,,Z,, (kn),, (8) — ir,, M—u,"(m]m P
n—1 r

Z, (kr)

H, = — YE, 3 in(n+ Do, P, '(cos B)sin ¢
" 1

x krZ (k.
Ho= —Yofy 3 [r,,,Z,,(kr)U,,,(H) —io,, i'—k(’iw,"(e)]smd;
n_1
> krZ, (k
Hy= + Yk, 3 [r,,,Z,,(kr)xIJ,,,(&) —io,, l—r;(—il—‘h(e)}cow
e |
Incident field
Z, (kr) =], (kr)
inc n ’ 0"‘5:0
a|"=1(2n+l){(_1)n+ly 9In(.=Tr
inc n - 8" =0
Tl"~1(2”+l)[(_l)n+l’ 6inc:
Scattered field for r < a
Z,(kr) =j, (kr)
o =A,,h, (ka)
7, = By, [kah, (ka)]'
Scattered field for r>a
Z, (kr) =h, (kr)
oi, =4, j,(ka)
i, = By, [kaj, (ka)]’
Terms
5. (8) = ) '.(cos [2)) — 1 P:,(.cos 8)
sin & n(n+1) sin@
W,,(0) = —JpP 7 (cos ) = d,P ! (cos 6)
n(n+1)
so that the modal coefficients
_tkaQ2I+D)fy - QI+ 1) (5.52)
= = , .
1 +,\_/}t hy(ka)
— 4ika (2
B”: gll- — l( 1+1) - (S.Sb)
I+ 1)1+ % [kah (ka)]

Referring to Egs. (2.4)—(2.14) and to Table I, this means
that (1) for r<a, ., = — ®" and ¥j_ = — ¥ so
that the total potentials, hence the fields, are identically Zero
there and the boundary conditions E, (r=a)
= — E X (r =a) are satisfied and (2) for r> a, the stan-
dard results for the scattered potentials—fields given, for
instance, in Ref. 38, Sec. 6.9, and Ref. 39, Sec. 16.9, are re-

covered.

VI. CURRENTS ON THE SPHERICAL SHELL

The most stringent test of the dual series solution is the
calculation of the currents J, and J, on the open spherical
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shell. Verification of the required current behavior near the
aperture edge is immediately apparent from graphical re-
sults. Moreover, the vanishing of the current in the aperture
is an excellent test of the results and reflects the satisfaction
of the corresponding TE and TM dual series equations in
that region. For normal incidence the current expressions
(4.11) simply become

Nl |4, £ 2D
To(6:6) = E (ka) °°S¢,§-. sin @
+ ikaB,, dgP ' (cos 9)} , (6.1)
J,(60.6) = {ﬂoﬂ} sing S ﬁA," 3,P = (cos §)
(ka)* n -1
e 1
+ ikaB,, w] . (6.2)
sin @

A. Analytical preconditioning

Consider first the quasistatic case where ka = 0.01,
6, = 120°. In all of the examples 2 = 1.0. Simply performing
the sums in (6.2) with the solution coefficients generated
from Egs. (4.54), we find that the number of terms required
to track the square root singularity in J, is large. The poly-
nomial sum 25_ | A4,, d, P, ' is the cause of this difficulty.
However, the truncation number N (Sec. IV C) need not be
large; and the remaining coefficients n = N + 1,...,.L are re-
cursively defined from (4.54a) and (4.54b). This is demon-
strated in Fig. 3 where the real part of
J,(0,7/2) [ (ka)?/YE,} is given for various truncation
numbers. In Figs. 3(a), 3(b), and 3(c) the truncation
numbers N =5 and L = 50, 500, and 5000, respectively.
However, the results may be improved by treating the singu-
larity analytically as follows.

Inserting the coefficient expressions (4.27a) and (4.41)
into (6.1) and (6.2) and referring to the definitions given in
Table III, the current components

— YK, N K (6)
Jy :&—Z(ka)z( cos ¢ ["Zl [F,,,

sin 6

. Gln
+ dika J,K1(6)
2n +1

5(6)

sin

— 2ka g[ a,,K{,’(e)“, (6.3)

+ 7Y, =0 :
Jy= 2(ka0;:0 sin ¢ {,,z [F,,, d,K £ (8)

G, K"
+ 4ika — 2 ——"()]

2n+1
el
sin @

result. Two advantages of these expressions are immediate.
First, the coefficients obtained from the matrix inversion can
be used directly without calculating any additional coeffi-
cients by recursion. Second, the currents vanish analytically
in the aperture. The terms proportional to F,, and G,, give

sin &

— 2kaé [a KE®) + (6.4)
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FIG. 3. Brute force summation of the J, (8,m/2) current expression requires a large number of terms to eliminate the numerical Gibbs' phenomena: (a)

N=5L=50(b) N=5,L=500; (c) N=5, L = 5000.

TABLE III. Special functions and relations for the current expressions.

= P, (&) (6, < B<1)
Kli = H P- 1 S 6 = _ 0
0 (8= 3 Li@PI (s = 5 10y 15,(8) (0<O<B,)
" ) + P Yo (8, < <)
E — E —1 ) = B
Kot =3, QI+ DLGEP (cos6) {+P0“'(t9)+s£(0) (0<8<6,)
0 (G, <0< m)
H 1 o
KUO) = 3 Tl @0, ' (c0s0) = { SUO) + Afs,(8) (0<6<6))
0 (6 < 0<m)
P P f o
ko= Z @+ DTGP E80) = 1559y | A%5,(6) (0<B<by)
where
ASE 50 cos(6,/2)
Su(6) = TAL sine{ (COS 7 2) ‘COSZ?[arccos(cos(ﬂ/Z))J}
. 26, 6 (005(00/2))”
Yo (cos? 2 01 recos( £502)
sg(0) = TAE [ 2( — cos® 2) +cos’ = [arccos /D)
_ /2
u, (0) =~4—cos(n + L)O,, [2(cos & - c0s 6p) ]
T 2 sin 6

SH(9) = i ARP [ (cos 8) + AP (6)
-

SE@)=u,(6) + 2n+ 1S ()
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TABLE IV, Derivative relations employed in the current calculations.

—4 [ —~cos@ [?) 0 NCACE . 0 cos(6y/2) 1 c0s{6,/2)
ot o e S 2] o e (BB ()
sy (6) A { ey [cos > cos 5 cos 5 cos 5 arccos os(072) + 5 arccos c0s(0/2)
44 [—cos@[ ﬂ( 2 0 292)"2
0gSp(0) = AL s cos 5 cos 5 cos 5
+ cos? 2 arccos (M)] 1 ecos (cos(eom ) 3 c0s(8y/2) }
2 cos(6/2) 2 cos(8/2) 2(cos* (6 /2) — cos?(6,/2))'"?

Feu, (0) =

— 8 cos(n + 1)0, [cosz L (COSZ 9_ cos? QQ) + sin® 9 cos? &]
7sin® 0(cos?(8/2) — cos*(B,/2))' 2L 2 2 2 2 2
Ps!

sin @

3sS (D) =3pu, (6) + (2n + 1), S ¥(H)

3eSH(O) = 3 AHGP T — A%
=1

no contributions in the aperture because K Z and K ¥ are zero _ Y.E, . N { E
there. The terms proportional to £ also reduce to zero there Jo =+ 2(ka)? sin ¢ ["Zl ,F‘ 9K :(9)
by (3.9).

Restricting now our attention to the behavior of the cur- G, K"@#)
rent on the metal, (6.3) and (6.4) yield + 4ika ‘ —"—]

2n+1 sin@
Y E, N[ KEO) 5, (0
Jo=— 2ka): ¢ [nz. tFl,. P — 2kat [a,,sﬁ(e) + ;’,( 0) ” (0<6<8,).

(6.4")

G
+ 4jka —= aer(e)}
2n+1

- Near the aperture edge 8 = 6, the terms K £(8) and K 7(0)
behave, respectively, as (6, — 8)'/?and (8, — 6)*%. Conse-
() quently, the square root singularity in J, is generated by the
7 T JoSu (0)“ (0<6<6,), term 9,K £(0) and, referring to Table IV, by the term

Jy55(0). If the former is generated numerically, a large
(6.3') number of coefficients are required. However, referring to

Sg
— 2kat [ -
Sin

o
£
o [ =
€ 28 — 2 28
S (a) T L(b)
= 24 & 24!
° [ |
[ =4 rF 2 n
S 20} & 20!
e | T |
2 16} 2 16}
ER ] = i
.g 124 ] T q2f
z | ] © I
£ 8} £ 8
=] I z "
n 4 E 4l
= 3 :
2 o_-—/_’_/ = 0
: | 3
3 _4 P S S, N bk ® _4 PUPR— P
Z o0 30 60 90 120 150 180 £E O 30 60 90 120 150 180
0 (deg) 2 o (deg)

FIG. 4. The Gibbs’ phenomena is removed by handling the edge singularity analytically. The dominant sum in the J, (6,7/2) expression (a) without
analytical preconditioning, and (b) with analytical preconditioning.
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Tables 111 and IV for 0<8 < 4, the relations
KEO)=S5(6) + Arysz(6)
= Qn+ 1)SHO) +u,(0) + Alsg(8),  (6.5)
3K E(0) = (2n + 1)3,SH(0) + Fpu, () + AE, 345, ()
(6.6)
indicate that one only needs to evaluate S #(8) and 3,5 #(9)
numerically. Since S #(8) = K#(0) — A s, (8) over the
metal and near the aperture edge d,K (8) ~ (6, — 8)"/?
and 8,5y ~ (6, — 0)'/?, the term 3,S7(8) ~ (6, — 6)''?
near & = 6,, which circumvents the numerical difficulties.
The square root singularity is handled analytically through
the terms d,u, and d,s;. A comparison of d,K £(8) evalu-
ated directly and with (6.6) is given in Fig. 4. Each sum

included 800 terms. As desired, the (numerical) oscillations
were removed by the analytical preconditioning.

B. Numerical resuits
Because the current components
Jo(8,8) =J,(6,0)cos ¢,
J, (6,8) =J,(8,m/2)sin @,

(6.7)
(6.8)

-
-2

Py
N

8

Magnitude of 7 (6, 0)
o
@™

0.4
0
-0.2
0 30 60 90 120 150 180
9 (deg)
28
24

20
16

Magnitude ouf(e, /2)
)

LO& -}

0 30 60 90 120 150 180
6 (deg)

FIG. 5. The magnitudes of the current terms # ,(6,0) and # ,(8,7/2)
induced on an open spherical shell with 6, = 120° when ka = 0.01 and
8™ =0.0.
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their important features are illustrated succinctly by consid-
ering J,(8,0) and J, (8,7/2). Examples of the scaled cur-
rent terms #, =J,(6,0)] — 2(ka)’/Y,E,] and 7,
=J,(0,7/2)[2(ka)?/Y,E,] are given in Figs. 5-10 for var-
ious ka, aperture sizes, and angles of incidence.

Values of | /4| and | #, | are given in Figs. 5 and 6 for
the quasistatic limit (ka = 0.01), the angle of incidence § '™
= 0.0, and, respectively, the aperture angles 8, = 120° and
6, = 170°. For both cases the truncation number N = 10.
Essentially the same results were generated with N = 3. This
low truncation number is typical for quasistatic cases be-
cause the n =1 term dominates the behavior. The term
|# 6| is given in Fig. 7 for '™ = 0.0, §, = 120°, and the ka
values 1.0, 3.0, 5.0, and 10.0. The corresponding graphs of
| # 4| are given in Fig. 8. For all of these cases the truncation
number was taken to be N = 10(ka). This choice yields con-
vergent results. The plots in Fig. 7 clearly demonstrate that
our solution reproduces the required (8, — 8) /2 behavior of
Jo near 8 == 6,;; Fig. 8 demonstrates that the required square
root singularity of J, near § = 6, is present. In Fig. 9 the
terms Re(#,) and |/ ,] are plotted for 6,= 120",
ka=10, 6™ =0, and 6 = 180°. Very different be-
haviors are obtained. When the wave is incident on the sheli

1.6 J
=)
- 1.2
S
\&\ﬂ) r
b 0.8 -
w N
kel
=3
= 0.4
o
o
[\

-0.21 -

0 30 60 90 120 150 180
0 (deg)

20
ST
< L
© i
[ 8-
o !
3 : J 1
= \
= 4: .
o
= 0‘

ol

0 30 60 90 120

150 180
6 (deg)

FIG. 6. The magnitudes of the current terms #,(8,0) and £, (6,7/2)
induced on an open spherical shell with 8, = 170° when ke = 0.01 and
& = 0.0,
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F1G. 9. A comparison of the real part and the magnitude of the current term # , (8,0) induced on an open spherical shell with 8, = 120° when ke = 1.0 and

the angle of incidence 8 '™ = 0" and 8'™ = 180°.

(6™ = 180°), | # 4| is much more uniformly distributed
over the shell. The hump near the aperture edge which ap-
peared when 8™ = 0° is no longer present. In Fig. 10, | #, |
is given for #™ = 0" and ka = 1.0 when 6, = 120° and
6, = 170°. The latter case exhibits a more pronounced hump
near the aperture edge.

The distributions of J, and J,, over the entire spherical
shell for ka = 3, ' = (, and 6, = 120" are shown in Figs.
11and 12, In Fig. 11 the values of | # ;i and | 7, | are replot-
ted in more detail to provide a reference for Figs. 12. In Figs.
12(a) and 12(b) 7, is viewed from the directions (6 = 0,
¢ =0) and (8 = 76", ¢ = 125°). Dark red represents the
largest values; dark blue the smallest ones. The characteris-
tic cosine pattern and null at the aperture edge are very ap-
parent. The corresponding views of 7, are given in Figs.
12(c) and 12(d). The associated sine pattern and edge sin-
gularity are nicely reproduced.

The current results have been validated with a totally
independent method'®: a completely numerical solution
based upon a method of moments (MoM) analysis of the
problem. It has been demonstrated that the MoM solution
converges to the dual series results when the former is appli-
cable.
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VII. ENERGY DENSITIES

To provide some measure of the degree of coupling of
the incident field into the spherical cavity, the energy density
at the center of the shell normalized to the incident field
energy density there was calculated. This also allows a direct
comparison with Senior-Desjardins results.'* "

Consider the normal incidence field expressions given in
Table LI for r = 0. With the small argument relations in the
Appendix, one obtains (75£0)

Jn(O)EO9 {[xjn (X)]‘/x}):m() =%6’|"
[I‘n (x)/x]x==0 :Zlitsnl‘
Moreover, P '(cos 8)/sinf = — | and — P '(cos )

= c0s(6 /2). Therefore, the general electric and magnetic
field vectors at the origin are

(E..E4.E,)(r=0)
= (i/3)E4r,,(sin 8 cos ¢, cos & cos ¢, — sin @), (7.1)
(H,,Hy,H,)(r=0)
= (i/3) Y Eq0,,(sin € sin @, cos @sin @, + cos @),
(7.2)
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where
Ullzo'ilnlc"'al(l = vlnlc+A|1hl(ka)v (7.3)
T|l=7'iln|c+7'1(1 =7J1'}C+Bll[kah|(ka)]', (7.4)
the incident field terms being
. 3i, 6"=0,
o = ) 7.5
! {3[, 6 = 7, (7:5)
. — 3 @™ =0,
7 = ) 7.6
" [31’, g = g, (7.6)

Consequently, the associated energy density relation is sim-
ply
U(r=0)=(E]*> +|ZH|*)(r=0)
=E§(lon >+ 7,))/18,
which leads to the desired energy density ratio
Uy (r=0)
U, (r=0)
oY + o tz + MY+ 75 lz
o + [
= %{|3i + A4,k (ka)|* + |3i F B, [kah,(ka)}?}
= {{1 — (i/3)A4,,h, (ka)|® + |1
+ (i/3)Blkah, (ka)]'|*}.

(7.7)

(7.8)
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induced on an open spherical shell with 8, = 120° when ke = 3.0 and the
angle of incidence ™™ = 0",

The upper sign is appropriate for 8 ™ = 0; the lower sign for
g inc T

The quantity 10log,, [U,, (r =0)/U,, . (r=0)] 1is
plotted in Figs. 1315 for the aperture angles 10°, 30°, and 60°
(i.e., for g, = 170°, 150°, and 120°) and for the angle of inci-
dence #*™ = (°. Several interesting features are apparent im-
mediately. For 6, = 170° the open spherical shell acts very
similarly to a spherical cavity of the same size. The peaks in
the data at ka = 4.49, 2.74, 3.87, and 4.97 closely corre-
spond, respectively, to the lowest TE and TM modes of a
closed cavity (see Ref. 36, pp. 268-271); i.e., to the lowest-
order zero x,, of {xj,(x) ] and to the zeros x},, x},, and x;,
of {xj;(x)]". They are slightly offset (detuned) from the
closed cavity values because of the presence of the aperture.
Extensions of the discussion in Sec. V for 8, near 7 and for ka
small lead to the approximate coefficient expressions in this
ka region,

2:’3 lfln ::l
Ji(ka)
zj:ml (3., F,','l/Zn + 1)

B\ lkah (ka)]" — [kaj,(ka) |’ ,
| KdJy

A, b (ka) — (7.92)

(7.9b)

which readily explain the locations of the observed features.
At higher ka peaks corresponding to the roots x,, of
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FIG. 12. The modal structure of the currents induced on an open spherical shell with 8; = 120° when ka = 3.0 and the angle of incidence 8 '™ == 0" is revealed
with three dimensional graphics: (a) a top view of the magnitude of the current term £ ,(6.4); (b) a side view of the magnitude of the current term
# 4(6.8); (c) a top view of the magnitude of the current term _#°, (6,4); (d) a side view of the magnitude of the current term #, (6,4).

[x/,(x)] =0andx,, of {x/, (x)]" = 0appear. The antire-
sonance form of the peaks at ka = 3.87 and 4.97 was not
anticipated. In fact, only the TE,, and TM,, modes
{n=1,2,...) develop the resonance form of the peaks; all
others have the antiresonant form. This behavior is a result
of (1) the modal patterns induced in the open cavity—all
TE,,,J and TM,,,, (ps%£1) modes havenullsat r = 0,and (2) a
reradiation effect that occurs because the aperture is backed

1311 J. Math. Phys,, Vol. 28, No. 6, June 1987

by a resonant cavity.*® The important features in the ka
scans of (7.8) for larger apertures are associated with the
modes effecting the antiresonant behavior.

Detuning of the cavity by the larger aperture is notice-
able in the 6, = 150° data. The resonance peaks are broad-
ened and the antiresonance peaks have become broad de-
pressions. The resonance locations are downshifted to lower
ka values (lower frequency); the antiresonance locations are

R. W. Ziolkowski and W. A. Johnson 1311
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FIG. 13. A scan in ka of the total energy density of the field at the origin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 170° and a plane wave incident at
6™ = 0°. The solid line is generated by the dual series solution, the dots by a
MoM surface patch code.

upshifted to higher ka values (higher frequency). The de-
pressions at the antiresonance locations indicate that this
slightly open cavity may have poor energy storage character-
istics, hence a large scattering cross section at those points.
Energy storage and cross-section calculations are also in
progress to study this (for instance see Ref. 40).

The largest aperture (6, = 120°) data shows nearly a
complete detuning of the cavity. The observed depressions
are shallower and broadened. They correspond to the origi-
nal antiresonance locations ka = 3.87 and 4.97, thus demon-
strating the considerable upshift in ka of their locations as
the aperture size increases. The data also indicates a focusing
of the energy near » =0 over a large range of ka. This is
expected since the shell is beginning to look largely like a
spherical reflector when 6, = 120°.

Comparing these results with those of Senior and Des-
jardins, very distinct dissimilarities are evident. Although
the resonance peaks at ka = 2.74 and 4.49 are present in
their results, the antiresonance peaks at kg = 3.87 and 4.97

40

20

° E//\“\Y/ \r

-40 1
L {
_50 d

~80

Power density atr = 0

“1000—"16""20 30 40 50

ka

FIG. 14 A scan in ka of the total energy density of the field at the origin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 150" and a plane wave incident at
@™ = 0°. The solid line 1s generated by the dual series solution, the dots by a
MoM surface patch code.
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FIG. 15. A scan in ka of the total energy density of the field at the origin
normalized to the energy density of the incident field there for an open
spherical shell having an aperture angle of 120° and a plane wave incident at
@' = 0°, The solid line is generated by the dual series solution, the dots by a
MoM surface patch code.

are not. Similarly, the antiresonance depressions in the
0, = 150" data are absent. Also, the levels they predicted for
small &a are close to 50 dB smaller in the 8, = 170° data and
20 dB smaller in the 8, = 150° data than ours. Analogously,
their resonance peak levels are higher than those we predict.
Qur results again have been validated with a method of mo-
ments calculation.'® Sample data points from those checks
have been included in Figs. 13-15. Agreement is very good.

VIll. SUMMARY

A complete solution of the scattering of a plane wave
from a spherical shell having a circular aperture was devel-
oped in this paper. The angle of incidence and the polariza-
tion of the plane wave were arbitrary. This solution was con-
structed with a dual series equations approach and was
validated in several different ways. Numerical results were
given for the case of normal incidence. Induced currents on
the open spherical shell were presented and it was demon-
strated that they satisfy Meixner’s edge conditions. Energy
density scans in ka were also given; they were dominated by
resonance features characteristic of the open spherical cav-
ity.

Several new concepts and techniques were reported.
The associated Legendre functions P, ™ for 0<n <m and
their duals P ;"™ were introduced to produce a system of
pseudodecoupled TE and TM dual series equations and to
insure satisfaction of Meixner’s edge conditions. Procedures
were described in detail that generated an analytical solution
of the resulting, previously untreated dual series systems and
a numerical solution of the resulting infinite system of linear
equations for the modal coefficients. Analytical precondi-
tioning of the current sums led to results free of any Gibbs
oscillations. The resonance features in the ke scans of an
energy density ratio at the origin were observed to be pre-
dominantly of an antiresonant form.

Cross-section and stored energy calculations are cur-
rently in progress. Preliminary cross-section results are also
dominated by antiresonance features and suggest that they
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are characteristic of a cavity-backed aperture. These studies
are summarized in Ref. 40.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE TERMS
X5 AND 3

The small argument and large index behavior of the
terms y? and y? will be developed for 7 > 0. The spherical

Bessel function expansions (see Ref. 37, Egs. 10.1.2 and
10.1.3)

1/2 n
C(n+3)
x2 _x4
Doty w
{ Wty O GE (AD)
i — (a4 1) 1
h =:——_—L__(j£) I‘( _*)
"(x) (477.)1/2 2 n+ 2
x? x°
o )
2(2n —1) n
and the identity
Cn+b={[@2n—-1) - 531]/27}7'?  (A3)

provide the necessary expressions. Equations (Al) and
(A2) yield

e (Tt D) 5_)"
1%, (0] *(4) r(n+g)(2

{]_ (n + 3)x?
2(n+ 1)(2n + 3)

7))

(A4)

. ,‘ —1—_ ;x_ —(n+1)
[xhn ()] = (4m)'/? "r(”Jr 2)(2)

. 2 4
x[l L =2 L, (j—)] (AS5)

2n(2n — 1)
Combining (A1)-(A3) gives
1
. n, -
Jn ()1 () i2n + 1)x
2x? x*
x11 ﬂ(-)];
' { +(2n——l)(2n+3)+ n?

(A6)
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combining (A3)-(AS5) gives
[%. ()] [xh, (x) ]
nn+1)
—i(2n + Dx
[] _ 2n® + 2n + NX*
nn+1)2n—-1)12n + 3)

)

(AT)
Consequently, for small arguments
lim y? = lim {{{(2n + Dxj, (x)h,(x)] — 1} ~0, (A8B)
x-+0 x—-0
lim ¢ = lim “—-————‘ H2n + 1)x
x—0 X0 nn+1)
X [xmx)]'{xh,,(x)]'} - 1]~0, (A9)
and for indices larger than the argument
lim y2(x) = lim & (x*/n?) ~0, (A10)
lim y?(x) = lim & (x*/n*) ~0. (A1)

Note that this limiting behavior is responsible for the num-
ber of terms required for convergence of the solution. In
particular, for large enough N, the terms

X (ka) ~y% (ka) ~ (ka/N)?

and the elements of the matrix .# ; in (4.49) are small. This
explains the choice N = 10 ka for the examples.
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Quantum mechanics for internal motions of the three-body system is set up on the basis of the
complex vector bundle theory. The three-body system is called a triatomic molecule in the
Born—-Oppenheimer approximation. The internal states of the molecule are described as cross
sections in the complex vector bundle assigned by an eigenvalue of the square of the total
angular momentum operator. This bundle is equipped with a linear connection, which is a
natural consequence of a geometric interpretation of the so-called Eckart condition. The
coupling of the internal motion with the rotation is understood naturally in terms of this
connection. The internal Hamiltonian operator is obtained which includes the internal motion—
rotation coupling and a centrifugal potential. The complex vector bundle for the triatomic
molecule proves to be a trivial bundle, though the geometric setting for the internal motion is

independent of whether the bundle is trivial or not.

I. INTRODUCTION

Quantum mechanics of a few-body system has been
drawing increasing interest in quantum chemistry.' A few-
body system is called a molecule in the Born—Oppenheimer
approximation. Theoretical treatment of nonrigid molecules
has been related more or less with the Eckart frame.? Tachi-
bana and the author® have discussed quantum mechanics of
nonrigid molecules without using the Eckart frame, but they
did not refer to the geometric setting in the large. This paper
is a continuation of the previous paper?® with particular inter-
est in an application of the theory of connections in complex
vector bundles.*

It is Guichardet® who observed that the center-of-mass
system is made into a principal fiber bundle with a rotation
group as structure group, and is endowed with a connection
by the Eckart condition. Using the holonomy theorem,* he
proved that the vibration cannot, in general, be separated
from the rotation.

On the basis of Guichardet’s observation, the present
author® showed that a moving frame, called the Eckart
frame, exists relative to which the molecule moves without
rotation, but it depends on a choice of the molecular motion
and is not unique for any molecular configuration. For this
reason the Eckart frame is not suited for a description of
quantum mechanics of nonrigid molecules.

The organization of this article is outlined in the follow-
ing way: Section II deals with the center-of-mass system. It is
shown that the center-of-mass system for a triatomic mole-
cule is made into a principal SO(3) bundle  and that the
base manifold M: = Q/ SO(3), called the internal space, is
diffeomorphic to R’, = {(x, y, z)eR? z> 0}. Since the base
manifold is contractible to a point, this SO(3) bundle be-
comes a trivial bundle’; Q=R? " XSO(3). Any point of 0]
can then be assigned uniquely by the internal coordinates in
IR3+ and the Euler angles in SO(3). A coordinate system,
called the Dragt coordinate system, is introduced on Q SO
that the Euler angles and the internal coordinates may as-
sign, respectively, the principal axes of moment of inertia
and the molecular configuration relative to the principal
axes.
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Section I1I is concerned with the connection due to Gui-
chardet. The connection form and the curvature form are
defined on the SO(3) bundle Q and expressed in the Dragt
coordinate system. It is to be noted that even though the Q is
a trivial bundle, the connection has nonvanishing curvature,
i.e., the Q is not flat with respect to this connection.

Section IV is a review of the total angular momentum
operator. The angular momentum operator is obtained as
the infinitesimal generator of the SO(3) action on Q. The
right and left actions of SO(3) are strictly distinguished. The
left and right actions give rise to the angular momentum
operator with respect to a fixed frame and to the principal
axis frame, respectively.

In Sec. V, the connection is discussed again in terms of
vector fields. The connection is by definition an assignment
of the vibrational (or horizontal) subspace of the tangent
space at every point of Q. Rotational and vibrational vectors
are discussed to demonstrate that the connection theory nat-
urally fits mechanics of several-particle systems. The con-
nection form is in fact dual to the angular momentum.

Section VI discusses the metric and the volume element
induced on the internal space. The results will be used for
constructing the internal Hamiltonian operator in Sec. VIIL.

In Sec. VII, the complex vector bundles V,, / being non-
negative integers, are introduced in association with the
SO(3) bundle 7: Q—»M . The linear connection and the cur-
vature are defined in ¥, and expressed in the Dragt coordi-
nate system. Like the SO(3) bundle Q, the ¥, is a trivial
bundle.

In Sec. VIII, quantum mechanics for internal states is
established on the vector bundle ¥V, together with the as-
signed internal Hamiltonian operator A, which acts on cross
sections in ¥,. The energy functional is used to derive the
operator H, from the usual Hamiltonian operator acting on
wave functions on the center-of-mass system. The H, is a
matrix-valued second-order differential operator which con-
tains both covariant derivation operators with respect to the
linear connection introduced in Sec. VII and a matrix-val-
ued centrifugal potential arising from the conservation of the
total angular momentum. This section contains also remarks
about internal Hamiltonian operators.
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The result obtained can be interpreted in terms of gauge
theory as follows: The rotation of the molecule induces a
gauge field (the curvature introduced in Sec. VII). The in-
ternal motion is coupled with the gauge field through the
gauge potential (the connection introduced in Sec. VII).
The gauge field plays the role of a magnetic field on the
internal space, and may be called the Coriolis field. The in-
ternal Hamiltonian describes the internal motion in cou-
pling with the Coriolis field under the presence of the centri-
fugal potential.

The three-body problem in R® is in marked contrast
with the same problem in R?, In fact, in the former case, the
SO(3) bundle and the associated complex vector bundles
are both trivial, but in the latter case, the SO(2) bundle and
the associated complex line bundles are neither trivial.®

Il. SETTINGS IN THE CENTER-OF-MASS SYSTEM
A. An orthonormal system

Consider a three-body system in R®, which we call a
triatomic molecule (or a molecule in short) in the Born—
Oppenheimer approximation. Let y, and m,, k = 1,2,3, de-
note the position vector and the mass of each particle, re-
spectively. Then the configuration space Q, of the molecule
is the linear space of all the triples y = ( p;, ¥, ¥5). The cen-
ter-of-mass system Q is defined as the linear subspace of Q,
defined by

3
z m; y,=0. (2.1)
k=1
We define the inner product K on @, by
K(x,p) :ka(xk|yk) , (2.2)

where the round brackets denote the standard inner product
in R?. The induced inner product in Q will be also denoted by
K without any confusion.

The rotation group SO(3) has a natural action on the
configuration space Qy;

Y=(Y0,Y2:)—8 = (81, &2 &V3) » (2.3)

where geSO(3). Since Eq. (2.1) is iiivariant under the
SO(3) action, the SO(3) also acts on the center-of-mass sys-
tem Q.

We start with the following proposition.

Proposition 1: The following system {c, fi, fi+ 3}
k = 1,2,3,is an orthonormal system in Q, with respect to the
inner product K:

¢, =Nolepee,), k=123,
fk ZNl(m3ek’O’ — mlek) » k = 1,293 ’ (24)
fivw =Ny —moey,(my +my)e,, —mye,), k=123,

where N;, j =0,1,2, are normalization constants given by
No=(m,+my+my) =2,
N, = (mmy(m, +my))~ Y2,
N, = (my(my + m3) (my + my + my)) ™12,

It is a matter of calculation to verify that {c,, f¢, /s  x }»
k =1,2,3, form an orthonormal system. The vectors { f;},
Jj=1,2,...,6, span the center-of-mass system Q, and the {c, },

(2.5)
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k = 1,2,3, are the basis of @, the orthogonal complement of
Q. The space Q" is identified with the space of center-of-
mass vectors. In fact, let B denote the center-of-mass vector

3 3 —1 3
B = z nmy yk(z mk> = Z Bkek . (2.6)
k=1 k=1 k=1
Then any triple ( y,, ¥,, y5) is as usual broken up into
(,Vnyz,Y3) = (B9B}B) + (xl,x2,x3) (27)
with = m, x, = 0. It is now easy to see that
3 B*c
(BBB) =Y —*, (2.8)
k=1 No
which assures the above assertion. The triple

X = (X, X5, X3) is of course expressed in terms of { j;},
j=1,...,6;

6 .
x=Y g%, ¢/=Kxf). (2.9)
j=1
Thus we may consider (B */Ny,q”), k= 1,2,3, j = 1,...,6, as
the Cartesian coordinates in Q;
3. B* 6
y=3 G+ X
< Ny i=1
It is now an easy matter to calculate K(gf, /),
i,j=12,..6, etc., for geSO(3) in order to express the
SO(3) action in the block diagonal form

8

(2.10)

2eSO(3) , (2.11)

g ,
b4
with respect to the basis {c;, fi, /s 4« }» k= 1,2,3, where
missing matrix entries are all zero.

In view of (2.11), we are allowed to think of the center-
of-mass system Q=R as a product space R* X R?, the first
factor spanned by f;, and the second by f; ., k = 1,2,3.
The SO(3) action on Q=~R>XR* is then a diagonal one.
Moreover, the vectors = g *f, and 2¢° * * f, . , can be repre-
sented in the original space R’. In effect, on setting 7* = ¢ *
and s*=¢g***, k= 1,2,3, to define the vectors r = Zrke,
and s = 3s*e, in R?, we obtain, after a straightforward cal-
culation,

r=((mm3)/(m; + m;))""* (%, — x3) ,

. ( my(my + msy) )1/2(x mx, +m3x3) (2.12)
= (222 T s , — =L T8
m, +m,+ m;,

m; + m,
These are Jacobi vectors used often in the three-body prob-
lem.®'® Thus the points x of the center-of-mass system can
be thought of as the pairs of vectors (7,s).

B. The internal space

Following Guichardet,” we make the center-of-mass
system Q into a principal fiber bundle with structure group
SO(3). To this end, we have to investigate whether the
SO(3) action on @ is free or not. Suppose that gr = r and
gs = s for some vectors rand s. If » and s are linearly indepen-
dent, g must be the identity. If they are linearly dependent, g
need not be the identity. Therefore setting

D={(rs)eR*XR>; Ar + us =0 with (A,u)#(0,0)},
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we find that the SO(3) acts freely on
0:= (R*XR?) — D, (2.13)

so that the quotient space M: = Q/SO(3) is a manifold,
called the internal space. Thus we obtain a principal fiber
bundle 7: Q — M with structure group SO(3). We note here
that the excluded set D corresponds to the configurations in
which three particles lie in the same line, and two or three of
them may happen to collide.

Now we wish to study the topology of the internal space.
For this purpose we consider the mapping

(r,s) = (|r]* — |s|%2(rls), 2jrXs]). (2.14)

Note that the quantities in the mapping image are invariant
under the SO(3) action. Since the set D is excluded, |rXs]|
must be positive. The quantities |r|?> — |s|* and (r|s) range
over all the real numbers. Hence, by (2.14), Q is mapped
onto R?, , the half-space of R>. Furthermore, it is easy to
verify that

(rl* = 1s1)? + 4(rls)* + 4|rXs|® = (|r* + |s**.
(2.15)

Conversely, when given a point (w *) of R ", ,theinverse
image of the mapping (2.14) is the set of solutions to the
coupled equations |r|* — |s|* =w', 2(r|s) =w? 2|rXs]|
=w?>0. In solving these equations, we see from (2.15)
that |r|> + |s|? is determined in terms of w*, k = 1,2,3, so
that |r| and |s| become known. Moreover, the angle made by
two vectors 7 and s is determined by 2(r|s) = w?. Thus we
can obtain a triangle formed by a certain pair of linearly
independent vectors r, and s, in R>. The solutions are then
the SO(3) orbit of r;, and s,. This shows that the inverse
image of (w*)eR?_ under the mapping (2.14) is topologi-
cally SO(3). Therefore we obtain the following theorem.

Theorem 2: The internal space M = Q /S0(3) is topolo-
gically R®, . Since R?  is contractible to a point, the princi-
pal fiber bundle 7: Q—»M becomes a trivial bundle,’ where 7
is equivalently given by (2.14).

The triviality of the bundle 7: Q— M implies the exis-
tence of a cross section’ o: M —Q, 700, = id. This fact was
known tacitly by Dragt,'! and Levy-Leblond and Levy-Na-
has,'? and used effectively in analyzing the states of nonin-
teracting three particles. According to them, » and s can be
expressed in the form

r=plcos(¢/2)cos(y/2)u, — sin(y¥/2)sin(y/2)u,),
s = p(sin(¥/2)cos(y/2)u, + cos(¢/2)sin(y/2)u,),
(2.16)

where (p,y,¥) are internal coordinates subject to

O<p< + 0, O<y<a/2, 0<Y<L2r,
and u, = ge,, kK = 1,2,3, are a moving frame such that the
molecule is set on the plane spanned by u, and u,. We will
refer to these coordinates as Dragt’s coordinates. In the suc-
ceeding section we will see that the u, are chosen so as to lie
in the direction of the principal axes of moment of inertia for
the molecule. It is also to be noted that the determinant of the
coefficient matrix of (2.16) is ] sin ¥, so that y #0. Now Eq.
(2. 16.) withu, =e¢,,i.e., g= id, provides a cross section oy:
M — Q. Every element of Q is then given in the form go,(w),
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8eSO(3), weM. Here we remark that the structure group
actson Q to the left, contrary to the usual convention accord-
ing to which the structure group acts on the principal fiber
bundle to the right.

From (2.16), the projection 7 given by (2.14) takes the
form

w'=|r]* — |s|>=p*cosPcosy,

w® =2(r|s) =p*sinycos y, (2.17)

w? =2|rXs| =p*sin y>0,
so that (p2,¢,17'/2 — y) can be thought of as the spherical
coordinates in R®, .

We conclude this section by fixing the Euler angles as
follows:

u, = e,(cos 3 cos & cos ¥ — sin a sin )
+ e,(cos B sin @ cos ¥ + cos @ sin ¥)

+e3( —sinfBcosy),

u, = e,( — cos 3 cos a sin ¥ — sin a cos ¥) (2.18)

+ e,( — cos Bsin a sin ¥ + cos @ cos ¥)

+ e3(sin Bsiny) ,
u,=e,;sinfcosa+e,sinfsina+e;cos 8,

where O<a <2, 0BT, O0K<y<2m.

I1l. THE CONNECTION DUE TO GUICHARDET
A. A review of the connection

In Ref. 6, using the connection form due to Guichardet,’
we have shown that there exists the Eckart frame, a frame
relative to which the molecule moves without rotation, along
any curve x(f) in the center-of-mass system, but it depends
inevitably on the choice of x(z). Hence the Eckart frame is
not suitable for description of molecular motions in quan-
tum as well as classical mechanics.

The connection form is defined as follows>®: Let AR
denote the space of antisymmetric tensors of order 2 on R,
and so(d) the Lie algebra of SO(d). A linear isomorphism R
of A’R? to so(d) is defined for £ =X, _; &, e, Ae; and
x = Zx'e; by

R,(x) = Z(z g,.jxf)e,. .

The inertia operator 4, : A’R?— A”R“ is defined on the cen-
ter-of-mass system by

3.1)

Ax(g) = _kaxk/\Rg(xk)y (3-2)
which is symmetric and positive definite, and k ranges from
1 to N, the number of particles. The connection form @ on
the center-of-mass system is then given by

w:R(—A;‘kaxk /\dxk),

where R (&) stands for R, for notational convenience.
Inourcase,d = 3. If weset £, = ¢°, £,5 = ', €3, = &%

the two-vector £=3,_;£,e;Ne; is identified with

¢ = Z¢'e,. Put another way, A’R? is identified with R by

(3.3)
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e, \e,—e; and the cyclic permutations. Accordingly, R be-
comes a linear isomorphism of R* to s0(3);

R (x) =R, (x) = —¢Xx, for xeR’.
Alternatively, R(e,) is the matrix (£;) with nonzero ele-
ments £,, = — &5, = 1 only, and so on. It should be noted

that R is Ad-equivariant in the sense that
R(g¢) = Ad, R($) =gR($)g™". (3.4)
With the above identification in mind, we treat 4, and @
in the form

Ax(¢)=zmkxk><(¢><xk), (3.5)

a)=R(f—Ax"lkaxk><dxk). (3.6)

We note again that 4, is symmetric and positive definite,
because

(¢I|Ax(¢)):ka(¢lxxk|¢xxk) . (3.7)
Moreover, using (3.4), we can verify that
Ay ($) =84, (g7 '4) , (3.8)

ﬂ.;“szdga)=ga)g“‘ , (3.9)

where A ¥ denotes the pullback by the g action; 4, (x) = gx.

A vector field v = (v, ), k = 1,2,3, on Q, which is sub-
ject to = m,v, =0, is called vibrational if it satisfies
w(v) = 0. From (3.6) this condition becomes equivalent to

> mpx, Xv, =0, (3.10)
because dx, (v) = v,, and R and A, are nonsingular. Equa-
tion (3.10) means that the total angular momentum vanish-
es for the vibrational vector fields. In this sense Eq. (3.10) is
viewed as a generalization of the Eckart condition to any
configuration of the molecule. Rotational vector fields are
defined as infinitesimal generators of the SO(3) action on Q,
which are given by R, (x): = (R, (x;)), k=1,2,3. We no-
tice that for rotational vector fields R, (x) one has

w(R¢(x))=R(——A;‘kaxk><( —¢Xxk))

=R(A;'4,($) =R, . (3.11)

Equations (3.9) and (3.11) are characteristic of the connec-
tion form.* We notice here that because of the left action Eq.
(3.9) is expressed in a form different from the usual one. In
what follows we will express 4, and  in terms of r and s and
of Dragt’s coordinates.

B. The inertia operator

We start by calculating 3 m, x, Xdx, . Since r and s are
givenby (2.12), the vectors x,, k = 1,2,3, with = m, x, =0,
are expressed as linear combinations of » and s. Consequent-
ly, a straightforward calculation gives

> mux, Xdx, =rXdr+sX ds. (3.12)

Applying (3.12) to a rotational vector R, (x), one obtains

> mex XRy (x,) =X Ry (r) +5XRy(s) . (3.13)
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We note here that since SO(3) acts on Q in the form (gr,gs),
rotational vector fields are expressed as (R, (7),R, (5)).
From (3.5) and (3.13) it follows that

A, (¢) =rX(Xr) +sX($Xs) . (3.14)

The matrix clements (e, |4, (e, }) of 4, are then easy to calcu-
late in terms of 7 and s:

(gl (e)) = — (Fr¥+sis%)  (j#k),
(ekIAk(ek)) B |r|2+ |S|2— (rk)Z - (Sk)z .

Applying (3.14) to u, = ge,, k = 1,2,3, together with
(2.16), we obtain

A_(u)) =p*sin®*(y/2)u,,

(3.15)

A, (uy) = p* cos*(y/2)u,, (3.16)
A, (uy) =puy.

These equations show that the u, lie in the direction of the

principal axes, and at the same time give the principal mo-

ments of inertia.

C. The connection form
The connection form (3.6) is now given from (3.12) as
o =R(—A ;" (rxdr+sxds)), 3.17)

where 4 ' is the inverse of the matrix given in (3.15).

In what follows we are going to calculate @ in Dragt’s
coordinates. For this purpose, the following formula, easy to
prove, is of great help.

Proposition 3: The frame (u, ), k = 1,2,3, satisfies the
relation

0 - e° e?
(dulxduZ’duE)) - (ulyuZ’u3) 63 O - el ’
- e o' 0

(3.18)

where © % k = 1,2,3, are left-invariant one-forms on SO(3)
which are expressed as

©' =sin ydf —sinBcos yda ,

©? = cos y dB + sin Bsin y da ,

©°*=cosfBda+dy.

Remark: When we set g= (u) and
O = — 2 R(e,)O*, a matrix-valued one-form, Eq. (3.18)
is written as dg = g0, or © = g~ ' dg.

Proposition 4: The right-invariant one-forms L 28
j=12,3, are given by ¥/ = 2 g, 6%, g, being the compo-
nents of g. From Eqgs. (2.18) and (3.19) one has

V! = _sina dB +sinfBcosady,

VY2 =cosadf +sinfBsinady,

V3 =da + cos Bdy.

For the proof we use (3.4). Since the right-invariant

matrix one-form is defined as ¥ =dg g~ ! = gBg ™", one ob-
tains

g0g7'= —g ¥ R(e,0"g7"

= _ZR(gekek) = —ZR(zgjkeij).

(3.19)

(3.20)
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Thus ¥ = — 2 R(e;)¥’ with ¥/ = 2 g, ©*. In the course
of the calculation, we have also obtained

Y= —ZR(ej)\I/jz —ZR(uk)Gk. (3.21)

Now we proceed to the calculation of w. Using (2.16)
and (3.18), we are ready to compute »Xdr +sXds in a
straightforward manner to obtain

rXdr+ sXds = p*sin*(y/2)u,0" + p* cos*(y/2)u,6*
+ p*uy(0° — Lsin y dy) . (3.22)

Since 4 .~ 'is given from (3.16), the connection form (3.17)
turns out to have the form

@ =V + R(u;)isinydy. (3.23)
We denote the components of w as follows:

w:ZR(uk)a"zzR(ek)a)". (3.24)
On account of Egs. (3.21) and (3.23), one has

o= -6,

= —0?, (3.25)

o*= — 0+ sinydy,

o'= — V' 4 LsinBcos a sin y dy,

@*= —¥? 4 IsinBsinasin y dy, (3.26)

= — ¥+ 1cosPBsinydy.

In summary, we have the following.

Theorem 5: The connnection form o takes the form
(3.23) or (3.24) with (3.25) and (3.26) in Dragt’s coordi-
nates (2.16).

Since the principal fiber bundle 71 Q—M is trivial
(Theorem 2), the connection form o is pulled back on the
internal space M through the cross section oy: M — Q. In fact,
setting @ = 8 = ¥ = 0 in (3.23), we obtain

o¢w = R(e;)sin y df .

)

(3.27)

D. The curvature form
The curvature form () is given by the structure equation
N=do—-owlo. (3.28)

Note here that SO(3) acts on Q to the left, so that the struc-
ture equation takes a different form from the usual one.* We
wish to express the Q in Dragt’s coordinates, as we have
done for w. To this end, the following propositions are of
great use.

Proposition 6: The left- and right-invariant one-forms ©
and ¥ on SO(3) are subject to the following Maurer—Cartan
equation, ' respectively:

dO= —ONO, dV=VAVY. (3.29)

Proposition 7: The matrices R(u,, ), k = 1,2,3, satisfy the
commutation relations

[R(u)),R(u)1 = — R(u;) (cycl.). (3.30)

To prove these equations, we note that [R(e,),
R(e;)] = — R(e;) (cycl.), which are easy to see. On using
(3.4) with ge, = u,, Eq. (3.30) proves to be a consequence
of these commutation relations.
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We are now in a position to write out (3.28) in Dragt’s
coordinates. From (3.23) we obtain

dw = dV¥ + R(u3)} cos y dy \Ndy
+ (R(u4,)0” — R(u,)O")Alsiny dy,

where we have used (3.18) to get R(du;) = R(u,)©?
— R(u,)©". On the other hand, using (3.21) and (3.30) to
get

R(uy)¥ = VR (u;) + R(u,)0' — R(u,)0?,
one obtains

oNo=YAY + (R(4,)0% — R(u,)0")ALsiny dy .
Thus the curvature form (3.28) turns out to be

QO = R(us)}cos ydyAdy . (3.31)

Theorem 8: The curvature form () is expressed as (3.31)
in Dragt’s coordinates (2.16).

The Q is pulled back on the internal space through the
cross section o, to give

0¥l = R(ey)lcos ydy Ndy .
From (3.27) and (3.32) we have 03} = do¥w.

(3.32)

IV. THE TOTAL ANGULAR MOMENTUM OPERATOR

The total angular momentum operator is defined
through the infinitesimal generator of the SO(3) action. The
operator .71 will be defined as i times the infinitesimal gener-
ator J; of the action of exp 7R (¢;), j = 1,2,3. While we have
treated the left action of SO(3), the right action is also of
great importance in dealing with the total angular momen-
tum operator. Recall Eq. (2.16); r and s are assigned by the
moving frame u, and the internal coordinates. The left ac-
tion of heSO(3) maps u, =S ute, to u, =hu,

=3(2 hj,ui )e; with the Euler angles (a’,8",7'), keeping
the internal coordinates fixed. This means that we are ob-
serving the rotation of the molecule in the fixed fame {e, }.
Contrary to this, under the right action of 4, the u, are
mapped to = u; h;, while the internal coordinates are left
invariant. This implies that we are observing the rotation of
the molecule in the moving frame {u, }. In effect, the right
action is related to a left action as follows: Let the matrix g be
viewed as a set of the column vectors #, = ge, . Then under
the left action of exp #R (;), the moving frame g = (u, ) is
mapped as a whole to (exp #R (1, ))g, which are put into, by
using (3.4),

(exp tR(u;))g = glexp tR(e;))g ™ 'g
= glexp 1R (e;)) . (4.1)

Thus the left action of exp ¢R (; ), the rotation of the mole-
cule around the u; axis, becomes equivalent to the right ac-
tion of exp tR(e;) on the frame g = (u, ).

Though the total angular momentum operator is al-
ready well known, we wish to derive them in order to realize
the difference between right and left actions.

A. The left action

We start with the left SO(3) action on a triple xeQ. Let
h(t) = exp tR(¢) be a one-parameter subgroup of SO(3).
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Then its infinitesimal generator is given by

}:(R(:ﬁ)xk < )=Z(—¢><xk aik)

k
a

=| — , 42

( Ix; ) 42

= 1,2,3, denote the gradient vectors. Let

where 3 /9x,, k

J= Eka——- - > eJ;.

Then the infinitesimal generator (4.2) is written as
(—¢|J).Since J; = ( —¢;|J), each J, turns out to be the
infinitesimal generator of exp R (¢;), j = 1,2,3.

We turn to the expression of J in 7 and s. Since the action
of h(t) has the form (A(¢)r,A(2)s), in the same manner as
(4.2) we have

(4.3)

J—r><§+s><——= Y e, (4.4)
where J; = ( — e;|J) is expressed in 7 and s.

Following the same procedure as the above, we can ex-
press J;, j=1,2,3, in the Euler angles. For any » and 5, we
set r(t) = h(t)r, s(t) = h(t)s, and u, (¢) = h(t)u,, where
u, (¢) has the Euler angles (@ (?), B(t),y(#)) with 2(0) = a,
B(0) =B, y(0) = y. Then, making use of (3.21), we have

dr(t)

“r=(zer ()

and the same equation for s(¢), where d /dt stands for the
tangent vector to the curve r(¢). In fact

(4.5)

dr(t) dh(2) B~ (8)

—_— = r(t) = ‘P(i) r(r)
dt dt dt

= ~ZG ( )R(uk)r(z)

= (Z O, (%)uk)Xr(t) .

The same calculation is good for s(#).

Let h(z) = exp tR(e;) for a fixed j. Then (dr/dt)(0)
=R(e)r= —e;Xr, and (ds/dt)(0) =R(e;)s= —e,
X, so that we have

—e ~ze ( )uk(O)

For eaph b this is the equation which determines
(@(0), 5(0),7(0)) and hence J;. A straightforward calcula-
tion then results in

Jl_cosacotﬁi+s1nai— cosa d

dar B sinf Iy’
a d sina d
J,=sinacotf — —cosa _—, 4.6
2 b % 3B  sinB Iy (46)
d
J= ——.
} da

The J;, j=1,2,3, are known as the right-invariant vector
fields on SO(3), which satisfy, for the right-invariant one-
forms (3.20),

WIi(J,) = — &7, . (4.7)
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_ The total angular momentum operators are defined as
J. = iJ, to satisfy
[ J\, J,] = i,

(cyel.) . (4.8)

B. The right action

The right action of A(#) is expressed as u, ()
= 3 u;h, (t). Differentiation gives #,(0) = 2 u;hy, (0).
On the other hand, Eq. (3.18) provides

{#,(0),1,(0),i,(0)) = (ul,uz,u3)6(jt)

Hence, for each #(¢) = exp tR (e, ), this equatlon reads

: d
(su0)-moff)] .

This determines (¢(0),5(0),7(0)), and therefore L,, the in-
finitesimal generator of the right action of exp tR(e;). To
obtain L; is now a matter of calculation:

cosy 4 . a a
Li=—— _— —siny— —cosycotfg —,
sin 8 da yﬂﬁ y oot 37’
siny d d
L= ——f o _cosy—+sinycot ———-, 4.9)
2 sin 8 da ¢ 78,3 veotB ay (
d
L= ——.
3 57/

These are known as the left-invariant vector fields on SO(3),
which satisfy, for the left-invariant one-forms (3.17),

oKL = —6%. (4.10)

. The total angular momentum operators are defined as
L, = —iL, to satisfy
[LI:LZ] = ILS

(cycl.) . 4.11)

It is worth mentioning that J, and L, are related by

3
2 &l =J;,
k=1

as the right- and left-invariant one-forms are related in the
same fashion (Proposition 4). From (4.3) and (4.12) it fol-
lows that

—Zej./jz —EukLk.

This equation is consistent with Eq. (4.1). In fact, from Eq.
(4.1) the infinitesimal generator L, of the right action of
exp tR(e;) must be the infinitesimal generator of the left
action of exp R (u, ). Hence the L, must equal ( — u, |J) on
account of (4.2) and (4.3). However, this is also a conse-
quence of (4.13). We note in conclusion that in a different
manner the operators J, and L, are derived in Ref. 14 in the
coordinates (¢,6,¢) = ( —a, — 5, — 7).

In summary we have the following.

Proposition 9: The total angular momentum operator J

is expressed as
d a )
rxX—+4sX
( or Js

j=123, (4.12)

(4.13)

- J
iy X o,
=Zej.AIj= —Zukzk,

(4.18)

Toshihiro twai 1320



where .}J =iJ; and Zk = —JjL, are given by (4.6) and
(4.9), respectively, in the Euler angles.

V. ROTATIONS AND VIBRATIONS
A. Rotational and vibrational vectors

We have introduced the connection in Sec. III in terms
of differential one-forms, and defined vibrational vector
fields as those vector fields for which the connection form
vanishes. Rotational vector fields are the infinitesimal gener-
ators of the SO(3) action. In this section, we review again
the connection in terms of vector fields. Let X, denote the
inner product induced from K into the tangent space T, (Q);

Kx(u,v)=2mk(uk|vk). (5.1)

We show that the vibrational vector fields are orthogonal to
the rotational vector fields with respect to K. In fact, for a
vibrational vector field v, subject to (3.10), and a rotational
vector field R, (x), we have

K (R, (X)) =3 my (v | — pXx;)

=(Z m; v, Xxk|¢)=0. (5.2)
Thus every tangent space to Q is decomposed into an orthog-
onal direct sum of the rotational and vibrational subspaces.
This is indeed the alternative definition of the connection
that Guichardet® first gave.

Let P, denote the projection such that P, (v), veT, (Q),
is the rotational component of v. Then we have, for
v=2(v,|d/3x,),

P.(v); = (A <Y mkkavk)Xxj , J=123.

(5.3)

Because the complement v — P, (v) is vibrational;

ij'xj X(UJ b (Ax—lzmkxk Xvk>Xxj) =0.

The rotational vector fields J, and L, have of course the
rotational components only. Indeed, for

d
Jj=z(—ej X X, pw ),
k

J
Lj=z(_u,. X | = )
k

we have, from (5.3) and (5.4), P, (J))y = —¢ Xx, and
P (L)) = —u; Xx;.

It is of great importance to recognize that the rotational
vector field is dual to the connection form. Ineed, from
(3.5), (3.6), (3.24), and (5.4), it follows that

w*(J) =8%, o*(L,)=8%. (5.5)
Each of these equations is a specialization of Eq. (3.11).
These are also verified by (3.25), (3.26), (4.7), and (4.10).

We now deal with vibrational vector fields. For a vector
field X on the internal space M, its vibrational (or horizon-
tal) lift*S is defined as the vibrational vector field on Q which
projects to X; 7, X ¥ = X, , where 7, is the tangent map

(5.4)
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of m: Q—M. Alternatively, the X* is determined by
o(X*)=0and 7, X * = X. We are going to obtain vibra-
tional lifts in Dragt’s coordinates. For /9%, (&)
= (p,x,¥), their vibrational lifts (d /3¢ /)* are found, by
using (5.5), to be

(_é’_)*_a (i)*_i
P/ @ \) '
(i)*=i—isin)(L3.
) " 2

In summary, the J; (or L;) and (3 /3¢ 7y* constitute a
basis of the space of vector fields on Q.

(5.6)

B. Rotational and vibrational covectors

In Sec. V A we have seen that the connection is an as-
signment of the vibrational subspace of the tangent space at
every point of Q. In this section we deal again with the con-
nection in the cotangent space. Let T ¥*( Q) denote the cotan-
gent space to Q at x. Then the inner product K, provides an
isomorphism K 2 of T, (Q) to T*(Q);

Kbu)w: =K (up), uvel (Q). (5.7)

Let K%(u)=p=(p,). Then from (5.7) one has
P« = myu,. Further, every cotangent space is equipped with
the inner product K¥*; for p,qu;"(Q), K* is defined
through K ¥ = (K%) " 'as

K¥pg): =K (KFP).KE()= 2%. (5.8)

k

An assignment of the vibrational subspace of the cotan-
gent space is made as follows: With the infinitesimal gener-
ator R, (x) of the SO(3) action, we can associate the rota-
tional covector K 2(R, (x)) = (m, R, (x;)), a triple. Then,
like vibrational vectors in the tangent space, vibrational co-
vectors are defined as those which are orthogonal to rota-
tional covectors with respect to K¥*. For a covector
p = (pi), the orthogonality condition takes the form

2 X Xpe =0,
which is similar to Eq. (3.10), and interpreted as a general-
ization of the Eckart condition.

Now, in a dual manner to (5.3), we can obtain the rota-
tional component P *(p) of a covector p as follows:

(5.9)

Pf(}’),-=(A;12xk><pk)><mjxj. (5.10)

For the proof, we have only to show that p — P ¥(p) is vibra-
tional;

ZXkX(pk '—(Ax_lzxj ij)kaxk)=0.

This is, however, easy to verify.

The components of the connection form, @’ or ¢/, have
indeed the rotational components only. To see this, we note
that w” and o/ are expressed as

a)jz(— lex_'zmkkadxk), j=123, (5.11)
af=(_ J-|A;‘2mkxk><dxk), j=123.  (512)
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These are easy consequences of (3.6) and (3.24). Because of
these expressions of @’ and ¢, we have dealt with the con-
nection form @ in the vector-valued form
w=A7"'Zm,x, Xdx, in Ref. 3. Equations (5.11) and
(5.12) are put into the form

“’j=z(—Ax_l(ej)kaxkldxk), (5.13)

ol=3 (=47 () Xmx, |dx,), (5.14)
respectively. Thinking of @/ and o as covectors and apply-
ing (5.10), we have P}(w’), = — A [ '(¢;) Xm,x, and
PY(o)) = — 4 () Xmx,.

We turn to vibrational one-forms. On account of (5.9),
a one-form v = Z(p,|dx, ) is vibrational if and only if it
vanishes for any rotational vector R, (x);

R, (1)) = (e | — #Xx,) = —(zxk ><pk|¢) 0.

For d{ 7, (£7) = (p,x,¥), the pullbacks 7*d{ / are vibra-
tional, as is easily seen. In summary, we have found the basis
o’ (or o) and d¢ 7, viewed as one-forms on @, in the space of
one-forms on Q. This basis is dual to the basis J;(orL;)and
(3 /8¢ 7)* obtained in the last section.

Proposition 10: The one-forms w’ (or o’) and d¢ / and
vector fields J; (or L;) and (d /¢ /y* constitute dual bases
on Q, where w’ and o/ are the components of the connection
form w [see (3.24)], and J; and L; the components of the
infinitesimal rotational vector J [see (4.13)], respectively,
and (J3/9f7/)* are the horizontal lifts of J/d¢ 7,
(; j) = (p»Xﬂ/’)

Remark: In a local sense, this proposition holds true for
any internal coordinates.

Vi. THE METRIC AND THE VOLUME ELEMENT ON THE
INTERNAL SPACE

A. The metric

We have defined the inner product X on @, which in-
duces the metric tensor K, givenin (5.1). In a symbolic way,
we can write K, as

K, =3 m(dx;|dx;)

= (dr|dr) + (ds|ds) . (6.1)

Here the last equality holds because of the fact the (#*) and
(s*) are the components of xeQ with respect to the ortho-
normal system { f;, 5,  }, K = 1,2,3. Our purpose in this
section is to express K, in terms of @’ (or ¢/) and d¢ 7, the
basis obtained in the last section.

Using (5.4) and (3.7), we obtain, for J;and L,

K. (J,J)= z m (e; XX |ep Xxg)

= (¢;|4, (e)), (6.2)
and similarly
K (L,L;) = (4|4, (u))) . (6.3)

We turn to K, ((3/35°)*, (3/3E)*), (£7) = (o, ¥). A
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metric tensor (b;) is defined on the internal space M by

-t ) (2] ()
(6.4)

The b;; are well defined, that is, the right-hand side of (6.4) is
independent of the x chosen, because every vibrational sub-
space at x in the same SO(3) orbit is isomorphic with the
tangent space to M at 7(x), and because K, is SO(3) invar-
iant. Thus on account of the orthogonality of J; (or ;) and
(3 /8¢ 7)*, and of the duality (Proposition 10), we have

K, =3 (e]d,(epw'e’ + 3 b, df ds 7

=3 (u|A, (u))o'o’ + 3 by df dS . (6.5)
In order to get (b;) in an explicit form, we refer to Eq.
(6.1).Using (2.16), (3.18),and (3.25), we can work out X,
to get
(dr|dr) + (ds|ds)
=dp® + 1 p*(dy® + cos’ y dy?) +p? sin® (y/2)(c')?
+ p? cos?(y/2) (%) + p* (). (6.6)
From (6.5) and (6.6) together with (3.16), the induced
metric on the internal space turns out to be

B, =dp” + 3 p*(dy* + cos® y dyf?) . (6.7)
If we set p*> = 7 and y = 7/2 — 6, Eq. (6.7) goes over into
B, = (1/47)(d7 + 7°(d0? +sin’ 0dY?)).  (6.8)

This shows that B, is a conformally flat metric, because
47B,,, is the standard flat metric expressed in the spherical
coordinates (7,6,%) in R, .

Theorem 11: The internal space is endowed with the
conformally flat metric which is expressed as Eq. (6.7) in
Dragt’s coordinates (2.16).

For the sake of use in Sec. VII, we discuss also K ¥ in a
dual manner to K, . From the definition (5.8) of K ¥ togeth-
er with (6.2), (6.3), and (6.4), we obtain

K*(o'o)) =(e]4 7 (e)), (6.9)
K*(dho)) = (u,|4 7' (u)), (6.10)
K*(ds'ds) =b7, (6.11)

where (b Y) is the inverse of (b;). Equation (6.11) can serve
as a generalized definition of Wilson’s G matrix. '
Using (6.9)-(6.11), we obtain, for a real-valued func-

tion f on Q,
Kx(dfdf)
(L

m \ dx,

B A 3\ J \*
=S (el NS f+ 3 b (f) f(agj) s

B . 9 \* 9 \*
=St w0+ 30 T ()
(6.12)
This equation is dual to Eq. (6.5), and the coefficients are

o)
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ready to be known from (6.6) in Dragt’s coordinates;

1
K*(dfdf) =———(L,f)?
z(drap) p2sin2(x/2)( f)
1 2 1 2
(L
T /2)( L,f) +p2( 3f)

p
-2y
(Ll o

B. The volume element

In order to perform integration on the internal space, we
have to fix the volume element which is to be deduced from
that on the configuration space Q,. The volume element on
Q, is of course dQy: = dy, Ady, Ady,, where dy, stands for
dy, Ndy; Ndy;, k = 1,2,3. The volume element d ¥V, defined
by the inner product X is related to dQ, by

dVy= (mym,m,;)*'?dQ, . (6.14)
We recall that (B */Nyg”), k = 1,2,3, j=1,...,6, serve as
the Cartesian coordinates in Q,, so that we have

dVo=NgdB'A--- NdB>Ndq' A - Adg®. (6.15)

Separating off the center-of-mass coordinates (B*) from
dQ,, we obtain, from (6.14) and (6.15), the volume element

onQ

dQ=pdq"'N--- Ndqg®,
ka 372
—pav, ,u=( ) (6.16)
Ilm,

where dV =dg' A --- Adg® equals the volume element de-
fined by the metric K, on Q.

Expressing dV in Dragt’s coordinates is straightfor-
ward. From (6.5) the volume element dV takes the form

= (det 4, det(d;))’w' Aw* ANo® AdE ' NdE2NdE?
= (det A1, det(b;))'?0* AP N> ANdE NdE2NdE?.
(6.17)
Here we have used the equality (u; |4, (4;)) = (e; |4, (¢;)).
We note that det 4, = det 4,-,, because of Eq. (3.8). Put

another way, det A, depends only on 7(x). Further, insert-
ing (3.25) and (3.26) into (6.17), we obtain

dQ=pudV=dGNdM, (6.18)
where

dG:= —O'NO’NO* = —V'AVAP3, (6.19)

dM: = p(det A, det(b;))"/*d;  NdE2ANdE> . (6.20)

We remark that dM is u(det(4, ))"/? times the volume ele-
ment defined by the metric (b;) on M. Expressing dG and
dM in Dragt’s coordinates is an easy matter. From (3.19)
and (3.20), and from (3.16) and (6.7), it follows that

dG =sin Bda NdBNdy, (6.21)
= (u/16) p’ sin 2y dp Ady Ady, (6.22)

respectively.
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Proposition 12: The volume element dM on the internal

space M is given by (6.20) or (6.22), which is uz(det 4, )'/?,

= (2 m,/TIm, )3'?, times the volume element defined by
the induced metric B on M.

Vil. ASSOCIATED COMPLEX VECTOR BUNDLES
A. The bundles V,

Our goal is to set up quantum mechanics for internal
molecular motions. To accomplish the task, we have to an-
swer the question of how the Euler angles should be elimin-
ated from the wave function f(x) on Q to give wave func-
tions on M. To do so, we invoke the vector bundle theory.
Recall that the center-of-mass system is made into the prin-
cipal SO(3) bundle 7: Q—M. With this bundle, complex
vector bundles are associated as follows: Fix a non-negative
integer /. Let D' denote the / th unitary irreducible represen-
tation of SO(3) and C¥*! its representation space. By
D). (g), geSO(3), we mean the matrix elements; for
z=(z;)eC?’* ! (Ref. 16), one has

—1
(D'(®)2) = ¥ Diy(8)z; - (7.1)
=1
For a basis |/m) with .73 |Im) = m|Im), this equation is often
written as

D'(g)|im) =Y |Im')D .., (&) .
It is also well known'* that the matrix D ‘(g) satisfies

JDg) =1+ 1)Dg), J2=3J2=S12,

(1.2)
JD'g) = —[J]P'e), k=123, (7.3)
DUg) =D [L.], k=123, (7.4)

where [Zk] = [ik] denote the representation matrices of
J, and L, respectively. Especially, one has

[ J,] = [L,] = diag(},] — 1,..., — ) . (7.5)
We notice that Egs. (7.3) and (7.4) result from the very
definition of J, and L, . Indeed, J, and L, are infinitesimal
generators of the left and right actions of SO(3), respective-
ly.
_ Define a left action of SO(3) on the product space
Q X CZI +1 by

(x,z)—-(gx,D'(g)z). (7.6)
This action gives an equivalence relation in Q XC¥+1 The
quotient manifold, denoted by Q X son sz *lismadeintoa

complex vector bundle ¥, = (Q X soy C¥ 1, m,,M) via the
commutative diagram

QXC21+1 7 QXSO(S)C21+1
pr | \m . an
Q T

where pr denotes the projection onto the first factor, and g, is
the natural projection. The 7, is the projection in ¥, such
that 7,09, = 7opr. A map 0: M—Q X o3, C** ! such that
oo = id is called a cross section in ¥;. The internal states of
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the molecule are then described as the cross sections in the
complex vector bundle V,. The “quantum” number / will
prove to assign the total angular momentum of the molecule;
J2=1(I+1).

A C¥* -valued function Fon Qs said to be D -equivar-
iant if it satisfies

F(gx) =D'(g)F(x) . (7.8)

To any D ‘-equivariant function, there corresponds a cross
section in the complex vector bundle ¥}, and vice versa.* We
denote by g7 the one-to-one correspondence from the cross
section to the D -equivariant function.

In our case, the correspondence g is quite simple on
account of Theorem 2. Let o, denote the cross section given
in Sec. I B. Then any point x of @ is of the form goy(w),
weM. Let F be a D '-equivariant function on Q. Then from
(7.8) it follows that

F(x) = D(g)F(op(w)). (7.9)

Thus, setting & = Fog,, one can identify ® with a cross sec-
tion and has ¢f*® = F. This means that any cross section in
V, becomes a C** '-valued function on M because of the
triviality of the SO(3) bundle 77: Q— M. We note also that
Eq. (7.9) is also expressed as

.y
Fo(x)=Y Di;()®;(w)

i=1

in components. This form of wave functions are frequently
used in the three-body problem.'®'? If ®; (w) = const, the
F,’s are those used by van Winter for the asymmetric rota-
tor.!” In what follows, we treat D -equivariant functions in
the form D (g)® (w). Now, the quantum number / is easy to
understand. Indeed, from (7.2) and (7.3) the D ’-equivar-
iant function D '(g)® (w) is a set of simultaneous eigenstates
ofJ 2and .}3. The cross section ® in ¥, is therefore thought of
as a set of the internal states of the molecule with a specified
eigenvaluej 2 = I(l 4 1). This understanding goes well irre-
spective of whether the complex vector bundle ¥ is trivial or
not.

Theorem 13: The internal states of the triatomic mole-
cule with an eigenvalue /(/ + 1) of the square of the total
angular momentum operator are described as the cross sec-
tions in the complex vector bundle V, givenin (7.7). The V;
is, however, a trivial bundle, and hence the cross sections
become C** !-valued functions on the internal space M.

The inner product for cross sections in ¥ is defined as
follows: Let @ and W be cross sections in ¥;. Then the Her-
mitian metric in ¥, is defined for ® and ¥ by

(P|W) (w) : = ((g7P) (x)[(¢¥) (%)), (7.10)

where the round brackets in the right-hand side indicate the
Hermitian inner product in G +1;
—1
(ulv) = 3 vy, upeC’*1,
k=1
We note that the right-hand side of (7.10) depends only on
m(x) = w. The inner product of ® and ¥ is then defined as

(®|W),, : =J (D) dM . (7.11)
M
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The L % space of cross sections with respect to this inner prod-
uct is considered the state space of the internal molecular
motions. From (6.18) and (7.10), the inner product is ex-
pressed as

f((q#@(x)l(q#%(x))dQ
Q

= de (D|¥) dM
SO(3) M
= 87(D|¥),, . (7.12)

B. The linear connectionon V, .

The vector bundle V¥ is equipped with the linear conn-
nection associated with the connection on Q (Ref. 4). LetX
be a vector field on M and X * its horizontal lift. Then for a
cross section o in V,, its covariant derivative with respect to
X is defined by

Vyo=gf " 'X*(qgfo). (7.13)

The operator V is called the associated linear connection,
which is linear in X and o, and satisfies for arbitrary func-
tions fon M the conditions

Vao=fV.0o, (7.14)

Vyfo=(Xf)o+fVyo. (7.15)
The curvature of V is defined by

R(X,Y)o=[Vy,Vy]o—Vixy 0. (7.16)
From (7.13), the curvature is also written as
RX,Y)o=¢qF ""([X*Y*] — [X,Y ]*)gf0. (7.17)

It is easy to express the associated linear connection and
its curvature in Dragt’s coordinates. From (5.6), (7.4), and
(7.13), it follows for a cross section o with qf"o

= D'(g)®(w) that

3 3
V&/&p=‘a_®13 Va/ang—‘@I’

5 _ X (7.18)
Vo0 =%®I——-;—sinx[L3],

where Iis the (2/ 4 1) X (2] + 1) identity matrix. We note
here that the connection form o¥w given in (3.27) is repre-
sented in the linear connection V so as to couple with 3 /3¢ 7,
(¢£79) = (p,y,¥). The curvature is computed by using (7.17)
to give

a 4 3 ~
R(—az,a)=icosx[L3] , (7.19)

2

and the other components vanishing. From (3.32) this cur-
vature R proves to be a representation of o¥(}.

Theorem 14: The linear connection and its curvature on
the complex vector bundle V; are expressed as (7.18) and
(7.19), respectively, in Dragt’s coordinates.

Vill. QUANTUM MECHANICS FOR INTERNAL STATES

We are in the final stage to set up quantum mechanics
for internal states of the triatomic molecule. What we have
to do is to obtain the internal Hamiltonian operator acting
on cross sections in V.
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A. The Laplacianon Q
We start with the kinetic energy of the molecule in Q,,

which is expressed as
1 1 ( af | df ) 40
Ox, o

7 Qo é)xk

where d /dx,, k = 1,2,3, are gradient vectors. When inte-
grated by parts, this functional yields the Laplacian A, with
respect to the inner product X;

w3 ().

Ix,

(8.1)

(8.2)

Owing to the fact that (B */N,,q’) serve as the Cartesian
coordinates in Q,, the Laplacian A, are put into the form

6 a 2 2 3 a 2
A°=Z(a—qf) Vo 2 (w)'

i=1 k=1

(8.3)

Separating off the center-of-mass coordinates (B*),
k = 1,2,3, or assuming that the wave functions under consi-
deration are independent of (B *), we obtain the Laplacian
A = 3(3/3q")? on Q. This operator can be also derived from
the functional

JQZ - ¥ (df.df)dQ. (8.4)
From (6.12), this expression turns into
Lz(e.- A7ep) T 4,70
oJ 2o () 1) ree
=L2(uf A7'w)) TF L, sdQ
+JQEb"f (%)*f( % ) fdQ. (8.5)

In both sides, the first term is twice the rotational energy,
and the last twice the vibrational energy.

We are ready to express A in Dragt’s coordinates, using
(6.13), (6.18), and (6.22). After integration by parts we can
obtain the following.

Theorem 15: The Laplacian A on the center-of-mass sys-
tem @ with respect to the metric K, givenin (6.6), takes the
form

2
> 9 J +200t2)(—§—+ 1

p 3p P2 8)(2 ax
; 5 G &
2 LinylL —
(61/; 2 sin p* sinz(x/Z)( X
1 1 ~
EE(L3)2))

+p2 cos?(y/2)
where L, = izk, k= 1,2,3, are given in (4.9).

Remark: The last term including (L )2 is derived from
the rotational energy and the rest from the vibrational ener-
gy. The vibrational part of A includes the differential opera-
tors coming from the horizontal lifts only [see (5.6)]. If the
vibrational part is separated off and (p,y,¥) are fixed, the
operator — A/2 reduces to the well-known Hamiltonian for

A=_a__+
dp cos® y

(L,)? + (8.6)
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the rigid rotator. The Laplacian A was given in Ref. 12 in the
expanded form.

B. The internal Hamiltonian operator

We are now in a position to obtain the internal Hamilto-
nian operator H, acting on cross sections in V,. Let H denote
the Hamiltonian operator on Q;

H= —1A+U, (8.7)

where U is the potential function invariant under the SO(3)
action. Let P be a cross section in ¥, and F the correspond-
ing D -equivariant function on Q; g¥® = F. Then, on ac-
count of Eq. (7.12), the internal Hamiltonian operator H, is
defined through

J(F |HF) dQ = 87(D|H,®),, . (8.8)
Q

Wenote that the left-hand side of (8.8) is thought of as a sum

of the kinetic energy for a wave function F, . Written out for

F(x) =D'(g)®(w), and integrated on SO(3), the left-’
hand side will yield the operator H,. For the sake of conven-

ience we treat the left-hand side in a form similar to (8.5).

Then we have

32 I 7) e

+%f > A4; (L, FIL; F)dQ
0

SR COREIE

+%J' S a7 \(J,F|J,F)dQ,
Q

(8.9)

where the round brackets in each integrand indicate the in-
ner product in C** !, and

Sl=(u A TN (w), aj

if

={e;|d ' (e)).

Using the definition of the covariant derivative and the fact
that D'(g) and [Lk] = [Jk] are unitary and Hermitian
matrices, respectively, together with (7.3) and (7.4), we ob-
tain, from (8.9),

1 " 1
——81rzf bi(V.®|V,P) dM + — 877
2 M2 (v, @[V, 2) + 2
IRl ADEY
M
1 )
=—8”2f bV, ®|V,®) dM
2 Mz ( | / )

1 _ _
+ 87 Lza"" Y@|D'(g")

X [7,117,1D(g)®) M,
where V,, i = 1,2,3, stand for V
gives the operator

(8.10)

asac++ Integration by parts

Toshihiro lwai 1325



11 . 1 LIz
)= ———3Vi(Jub"V) + =>4, '[L][L]
2 Jy 2
11

= ——— Y V,(J,b,
2JMz (b V)

1 A
+—-2a; DIeTHI]I10'@®), (8.11)
where J,, = u(det A4, det(b; ))!/2 is the volume density on
M [see (6.20)]. The internal Hamiltonian H, is then the
sum 7; + U® I, where I'is (2/ + 1) X (2/ + 1) identity ma-
trix. Writing out (8.11) in Dragt’s coordinates, we obtain

H = _L[(_?_z+ii
2 I\dp* p P
+;;4-5(§722+2cot2)(§x—))®1
+7—S;Tx(ai¢®l—%sinx[z3])2]
R e

+£—2[i3]2]+U®1. (8.12)

Theorem 16: The internal Hamiltonian operator acting
oncross sections in V, isgivenby H, = 7, + U® I, where T}
is defined in (8.11). In Dragt’s coordinates, the H, takes the
form of (8.12).

We conclude this section with some remarks on the
Schrodinger operator H,. Zickendraht'® has already derived
the system of coupled equations H,® = E® without refer-
ence to the internal motion. The quantum three-body prob-
lem without interaction was also analyzed in Refs. 11 and 12
by using an SU(3) action on the center-of-mass system
O~R*xR>~C? but the internal motion was received little
attention. In Refs. 18 and 19, the same problem was studied
through the hyperspherical functions on S°CR®=Q. For
several-particle systems, the internal Hamiltonian operator
will be obtained in the same manner as was done in this
paper, though the topology of the internal space is difficult to
study.

Remark: For the four-body problem, the internal space
can be shown to be homeomorphic to R X (S° — P), where P
is a submanifold of S ° homeomorphic to the projective plane
RP2. (For the proof, see Ref. 20, Lemma 6.3.)

Further, we notice that when the angular momentum
vanishes, the internal Hamiltonian reduces to the one we
have presented in the previous paper.® That is, for / = 0, we
have

Ho= — 2015 8,(0,b%)) + U, 8, =2

2 ' ’ TN
It is worth mentioning that the first term is not — } times the
Laplacian on the Riemannian space M endowed with the
metric B, because J,, is (2m,/Mm, )*>*(det 4, )"/? times
(det(d,;))"/?, and det 4, is not constant.

The advantage of the use of the connection theory is that
in terms of connection theory one can understand how the
internal motion is coupled with the rotation. The rotation of
the molecule induces on the internal space the matrix-valued
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gauge field or the curvature (7.19), with which the internal
motion is coupled through the gauge potential or the connec-
tion (7.18). The curvature of this connection may be called
the Coriolis field in the sense that it is induced by the rotation
and plays the role of a matrix-valued magnetic field on the
internal space. The internal motion is driven also by the ma-
trix-valued centrifugal potential, each of the second terms in
the right-hand side of (8.11). The internal Hamiltonian op-
erator is a second order matrix-valued differential operator
including both the internal motion-Coriolis field coupling
and the centrifugal potential. The ambiguity in an early pa-
per?! by Hirschfelder and Wigner is thus cleared up in terms
of vector bundle theory.

The last but very important point to make is the fact that
for a quantum system one can describe the internal motion of
a molecule (Theorems 13 and 16) but for a classical system
one cannot. This is explained by Jacobi’s celebrated “elimi-
nation of nodes.” According to Wintner,?? the dimensions of
the classical Hamiltonian system are reduced by 34+ 1=4
by eliminating the angular momentum. However, in order to
get a classical Hamiltonian system for the internal motion
this reduction of dimensions must be 3 X 2 = 6 in number. If
so, the reduced Hamiltonian system would be of dimension
3X 2 = 6, twice the dimension of the internal space.
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Quantum mechanics of a charged scalar boson with respect to an observer’s
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An observer whose instantaneous “here-now’’ has Minkowski coordinates z* (4 = 0,1,2,3) can
only be aware of events within or on the past light cone with vertex at z*. In conventional
quantum mechanics his current quantum state would refer to some spacelike surface
containing z*, for example, x° = z°. This is, however, a region of space-time about which the
observer can know nothing except the single event z*, his current here-now. The aim of the
present paper is to give a version of quantum mechanics in which the intrinsically unknowable
“Quantum state at the present time” is replaced by the “quantum state on the past light cone.”
The theory is an extension and adaptation of Dirac’s point mechanics [ Rev. Mod. Phys. 21,

392 (1949) 1.

I. INTRODUCTION

A previous paper' drew attention to the problems that
stem from the finiteness of the velocity of light ¢ in the con-
ventional approaches both to classical and to quantum the-
ory. At a certain time z, an observer simply cannot know all
the initial data of a system if that data is specified on the
spacelike surface ¢t = f,. Reference 1 considered an adapta-
tion of Dirac’s classical Hamiltonian point mechanics® in
which dynamical variables are specified by their values on an
observer’s past light cones, progression from data on an ini-
tial light cone to that on the current light cone being
achieved by a canonical transformation. The aim of this
present paper is to give a corresponding quantum treatment.

We first need to recall the definition of the light cone
coordinates’ belonging to an observer. Let the observer’s tra-
jectory in four dimensional Minkowski space be given in
parametric form by?

xt=2(r), (D

where the parameter 7 is taken as the proper interval
(2, dz* dz*)'* measured along the trajectory from some
arbitrary event. Thus 7, v =1, °>1, where
v* = dz*(7)/dr is the observer’s four-velocity vector. We
now define a change of coordinates x* — (7,p',y>»*) by

=AM+, = —y (2)

where y = |y|. Thus the three-surface 7 = 7, is the past light
cone with vertex z*(7,), while the past-pointing null vector
y* serves to parametrize the cone. All compatible dynamical
data on this cone can be known by the observer when his
personal ideal clock reads 7,/c, i.e., when his “here-now” is
(7).

Reference 1 considered in detail the classical motion of a
spin-zero particle of mass m, which was either free or suf-
fered electromagnetic interactions. For this system the evo-
lution of any dynamical variable f was shown to be governed
by

af _ oy O 3
- v, { "} + Foe 3
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Here the Poisson bracket is defined with respect to a set of
conjugate generalized coordinate-momentum pairs of which
Jfand p* are functions. The second term on the right of (3)
arises if fis additionally an explicit function of 7. The four-
vector p* is the energy-momentum vector of the system. In
Ref. 1 it was shown that for a wide class of dynamical vari-
ables (3) is equivalent to

af af
ot Upid + (8/)exp1icit’ ®
where we now have four independent variables z*. The sec-
ond term on the right of (4) arises if / depends not only on
the conjugate variables which define the Poisson brackets
but also explicitly on z*. Dynamical variables which satisfy
(4) depend only on the particle trajectory and where the
latter cuts the past light cone with vertex z*. The route by
which the observer arrived at z* is irrelevent.

In the present paper we seek Schrddinger picture quan-
tum analogs of (3) and (4) of the form

i W) = v, pbe W (D)), (5)
dr

., d
’ﬁa_zAN'(ZK)) = Pors |¥(2)). (6)

The problem is to define a suitable Hilbert space 77y, of
physical states {¥) and to specify the action of the four-
momentum operator p5, on these states. In (5), 7 is regard-
ed as an external parameter whose interpretation is that an
observer following trajectory (1) finds that his quantum
state |¥ (7)) evolves with his proper time according to (5).
Likewisein (6), | ¥ (z¥)) is the state belonging to an observer
whose here-now is z*, with (6) governing how the state var-
ies with z*.

As in Ref. 1 we shall focus our attention on a system of
one spin-zero boson of mass m. For this system a suitable set
of classical variables is the pair y, m, where the coordinate y
specifies the particle position on the observer’s past light
cone according to (2), and the conjugate variable 1 is de-
fined as in Ref. 1. In the case of a free particle, the appropri-
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ate momentum vector p* =p*(y,w), which governs the clas-
sical motion via (3) and (4), is given by
p°=§(Y"ﬂ')—l(‘rr2+mzcz)y, -
p=m—i(ym) " (w+ m’c)y.
When an electromagnetic field derived from a potential
A*=A4%4(x")=A"(Z + y~) is present, and the particle has a
charge e, (7) is changed to

P’ — (e/c)A® = Y(ymy) " (wf + m?c?)y,

(3)
p— (e/0)A =my — Wyme) ' (mp + m°D)y,
where
=1 — A+73949,
‘frE T —(e/c)(A+34°) 9
y=y/y.

What we need are quantum analogs of (7) and (8),
where y and 1 are replaced by operators in some Hilbert
space. An obvious candidate for the latter is
7, = L*(R’,d’y/y). This is defined as the Hilbert space of
complex scalar functions ¥ (y) for which the norm

3
(), = "—y* v |2

exists, and with the scalar product of two elements #,(y)
and ¥,(y) defined by

d3
(Gothr), =f7y:/fr(y)¢z<y).

If 4, and ¢, are SO(1,3) scalars then this scalar product is
Lorentz invariant on account of the like invariance of d *y/y.
This motivates using the measure d *y/y rather than d 3y.

In the Hilbert space 5%°, the operator analogs of the
classical variables y and m act according to

Yor w(Y) = Y¢(Y),
Top(y) = — ifp!? (—a—) b)),
dy

The operators so defined are Hermitian with respect to (10)
in domains which are dense subspaces of 7#°,. From these
operators our aim is to construct an appropriate four-mo-
mentum operator pSp, which determines the evolution of
quantum states with respect to the external parameters 7 or
7" according to (5) or (6).

By analogy with nonrelativistic quantum mechanics, we
shall tentatively interpret |¢/(y,7)|> d *y/y as the probability
that a measurement of the position of the particle on the past
light cone with vertex z*(7) will yield a value in the range y
toy + dy (normalizing ¥ to unity). Such a measurement, of
course, needs the collaboration of a large number of auxil-
iary observers spread throughout the current past light cone
of the central observer, the measurement having been prear-
ranged.

In a relativistic quantum theory we should anticipate
the appearance of antiparticle states. This means that we
should not expect 77, to be the same as %, ., the Hilbert
space of physical states |¥). We shall in fact resolve the
elements (y)es”, into particle and antiparticle compo-
nents, and then construct the states |¥) from the particle
amplitude and the complex conjugate of the antiparticle am-
plitude.

(10)

(11)
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In Sec. II we review the conventional theory of a
charged scalar boson based on the Klein—-Gordon equation.
This will be written both in the usual Minkowski coordinates
and in the light cone coordinates defined by (2). The latter
formulation adds some insight to Sec. I, which addresses
the difficult problem of finding energy momentum operators
pép which parallel the classical expressions (7) and (8).

Il. KLEIN-GORDON THEORY
A. The Klein-Gordon equation in Minkowski
coordinates

In the conventional, first-quantized theory of a nonin-
teracting charged scalar boson we have a complex amplitude
&= (x*), which obeys the Klein—-Gordon equation

e (ﬁ‘i)z ®=0.

Ix* Ix+ #i
By taking a Fourier transform we obtain the general solution
of (12) in the form®

(12)

&= (2#)_3/2dek [a(kye =™ 1 {b(k)e = **}*].
(13)

The integration in (13) is over all future-pointing vectors & *
lying on the mass shell, i.e.,

Nk *k* =?, Kk =mc/h,

14

k():ek =(k2 +K2)l/2’ ( )
with the standard Lorentz invariant measure®

ds, = dk/e,. (15)

The particle and antiparticle amplitudes for four-momen-
tum #ik * are, respectively, a(k) and (k). A Lorentz invar-
iant scalar product* may be introduced between any two
solutions @ and &’ of (12):

a®’  IP*
ax* oxt
where S is any unbounded spacelike three-surface. For suffi-
ciently localized solutions (16) is independent of the choice
of S. However the norm (®,P ) can be negative so that the
scalar product (16) is not suitable for the definition of a
Hilbert space. The Hilbert space of physical states 5#7,,, is
constructed instead from the amplitudes @ (k) and b(k). Let
us write

s0 =|

(D,0) (, :%de”[d)* <l>’], (16)
S

a(k)

tk) =
b(k)]’ #'(k) = [a*(k),b*(k)],

(17)

and define the Hilbert space 77, = 5, to be the linear
vector space of all ¢(k) for which the norm (@,4) exists,

based on the scalar product

(6.6 =fdsk (k)¢ (K),

=fd5k [e*(k)a'(k) +b*(k)b'(k)].  (18)
In 7, the momentum four-vector and position three-vector
operators are given, respectively, by

popd (k) = ik *p(k), (19)
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172 8

xop O(k) = i€y [ek 24(k)], 20)

while the charge operator is
1 0)
= . 21
Q=e (o ~1 2D
The Hermitian operators which generate infinitesimal
rotations and boosts are defined, respectively, by
23 .31 d¢ (k
G D0 = — ikx L& (22)
dk
3¢>(k)
dk
with the tensor i being interpreted as the angular momen-
tum operator in ;. The commutation relations of p{p and
Ji# are those appropriate for the generators of the Poincaré
group:
[ng ’ng ] =0, (24)
[Jk ,Pop ] = lﬁ[ﬂ POP WLAPSP ] (25)
(75 7] = [ s + pft — i — ). (26)
When an external electromagnetic field derived from
the vector potential 4% is present we modify (12) by the
ansatz d /0x’1—>8 /9x* + [ie/(Fic) 1A,

(GBI (k) = — ihe, (23)

wf O de A ) 2 —
7 (c?x +X4 )(c?x +hcA O+ P=0. (27)
However, no longer is there in general any natural separa-
tion into particle and antiparticle amplitudes based on the
sign of the frequency. Thus it is now difficult to know how to
construct the Hilbert space of physical states #,,,., and to
define therein suitable energy, momentum, and angular mo-
mentum operators. A satisfactory resolution of these prob-
lems requires second quantization and the use of the interac-
tion picture.

B. The Klein-Gordon equation in light cone coordinates

Itis instructive to rewrite the Klein—-Gordon equation in
terms of the light cone coordinates of an observer. The for-
malism so obtained is equivalent to the usual one, and does
not yield the past light cone quantum theory that we are
seeking. Nevertheless it does provide some useful pointers
on how to attain our goal, and in particular leads to the
valuable identities (49) and (50) below.

The metric tensor for the coordinates (r,y',3°,»*) has
been given in Ref. 1, and with its aid standard tensor analysis
transforms the free Klein~Gordon equation (12) to the
form

lz—(?g=U,IR D. (28)
or
In (28) 2 is a scalar operator and R # is a vector operator,

with the definitions

5= —i(y-fy——+ 1), (29)
2
R°=é—y(—%+lé"), (30)
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J d 1 a?

Re L) LT
dy\" dy 2 ay?

These operators are Hermitian with respect to the 77, scalar

product (10), and are subject to the identity

M RR* =12(3? — 1). (32)

The indefinite Klein—-Gordon scalar product (16) assumes a
simple form in light cone coordinates. Choosing a sequence
of spacelike three-surfaces which have the past light cone
7 = const as their limit, we find that for sufficiently localized
P, ¢,

F (d% IO+ 3%’
(®,9") =ij——{q>'--—~<1>*-_._
KG ) y y 3 y dy

= (9,39, (33)

where the latter is an /7, scalar product [see (10)]. As we
shall see later in this section, X has positive, negative, and
zero eigenvalues, consistent with the indefinite character of
the Klein—Gordon scalar product.

In terms of our light cone coordinates the general free
particle solution (13) becomes

® =fdsk [a)ue (v)e ™" + {b0)ug (e~ ],

(34)
where
u, (y) = 2m) -—3/2e — ikgy* = (27) —3/2ei(fk)"+ k'y). (35)
Substituting (34) into (28) yields the eigenvalue equations
R* =k ,
u (y) u (y) (36)
fup(y) = — k*Zug(y).

In Appendix A we prove the following orthogonality and
completeness properties:

(u,2u,), = €8k — k), (37)
(uf,3ut), = — €6k — k), (38)
(u¥,2u,.), =0, (39)
2ReUdSk Euk(y)u,’:‘(y’)] =y5(y —Y¥'). (40)

Using the orthogonality relations (37)~(39) we can project
out the particle and antiparticle amplitudes from (34):

a(k) = e (u,,39),,

(41)

b(k) = ™ (u, ,TD*),.

Thus the value of ®(y) on any initial light cone suffices to
determine a (k) and (k), and hence the value of & (y) on all
later light cones. Contrast this behavior with that of the usu-
al theory, where both ® and g®/3x° are needed as initial
data. We must make one proviso, however. Integrating (28)
with respect to y yields

(42)

i—=v, J (R *®(ay))da + ——1~ C(T’y)
or y

(The notation in the integrand means that R *® is to be
evaluated at ay before integrating over «.) An arbitrary
function C(7,§) appears in (42), indicating that the evolu-
tion is not unique if one allows solutions which fall off with
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distance like y ~ . Such solutions would involve infinite ener-
gies and would not be normalizable.

The significance of the operators R * may be seen from
the expression for the expectation value of the momentum
operator plp defined by (19). We have

(o) =fdsk[|a<k>|2 + 16001k = (DR D),
(43)

where use has been made of (36) and (40). Despite the ap-
pearance of (43), R * cannot be regarded as a momentum
operator in #°, because its components do not mutually
commute. Further, the identity (32) shows that the eigen-
values of 7,, R *R * can have either sign.

The form of (28)-(31) is quite suggestive. Comparison
with the expressions (7) for the classical momentum vector
p* shows #°R * is the Hermitian part of the operator obtained
from (y-mw)p” by the replacement w—mqp [see (11)]. The
operator #2 is likewise obtained from the classical quantity
D=y-m. Consider now a solution ¢ of (28) which has no
antiparticle content. We can heuristically write (28) as

# 0P, =v, A3 'R*D_,
T

(44)

ignoring the fact that = can have zero eigenvalues. Equation
(44) looks like (5), with p&p = A3~ 'R *. Unfortunately
this operator is not Hermitian with respect to the scalar
product (10), but only with respect to the indefinite product
(33), and further, its components do not mutually com-
mute. On these grounds #2 'R * is not acceptable as the
momentum operator, even if we manage to give it a rigorous
meaning in some domain.

In subsequent sections the eigenvalues and eigenvectors
of the operator 2, defined in (29), will be of importance. A
complete, orthonormal set of simultaneous eigenvectors of
the commuting Hermitian operators £ and §, with respec-
tive eigenvalues o and w, is

Vow (¥) = (2m) V2715 (§,w). (45)

In (45), o takes any real value in ( — o0, 00 ), W is any real
unit vector, while 6 (§,w) is the surface Dirac delta function
for a unit sphere. Strictly, these functions lie outside %77,
because they are not normalizable, but nevertheless they
comprise a useful expansion set for the elements of 77, on
account of their orthogonality and completeness:

(Uow’vo’w' )y = 5(0- - 0")6(w’wl)9
(46)
Jya'adzwvaw (Y)vX, (¥') =pb(y — y').

In particular, the function u, (y) of (35) has the expansion

u, (y) :fdadzw u, (o,wiv,, (y),

l'el/21n7

(47)

u, (ow) = I'(l —io)(e, +kw)?— 1

The integration in (47) is over the complete range of the
eigenvalues, — oo t0 <o for o and the surface of a unit sphere
for w. Substituting (47) into the orthogonality relation (37)
yields
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— (€, + kw) !
1677' smh7m ,

X (& + kW) '=¢6k-k'). (48)
If we take the complex conjugate of (48) and replace the
variable of integration o by — o, the left-hand side assumes
the same form except that e” is replaced by — e~ . Aver-
aging this integral with (48) then yields the important iden-
tity

Pdod*w(e, +kw) 7 e, +klw)o!
167 J ‘ *

=¢€.0(k—Kk'). (49)
In a similar manner (47) substituted into the completeness
relation (40) leads to

o dek oo’ (€, + kw)° (e, +kw) !
T

=16(c—d)8(w,w') +6(c+0)G(oww). (50)

The form of the function G is left undetermined by this argu-
ment, but is proved in Appendix A to be

G(oww) = — (io/4m) (L&) (1 —wew') T~ 1

(51)

The identities (49) and (50) will play an important role in
Sec. II1.

11l. QUANTIZATION OF THE FREE SYSTEM
A. Introduction

Passage from classical to quantum theory is notoriously
ambiguous® because of the problem of how to order noncom-
muting factors. The classical system we are dealing with here
is that of one free charged scalar boson whose dynamics are
described in terms of the light cone coordinates (7,y'3%,y*)
belonging to an observer with trajectory (1). The energy
momentum four-vector p* of this system is given by (7) as a
function of the Hamiltonian conjugate variables y and .
Suppose we attempt in (7) the substitutions y -yop and
m —Wop according to (11). How are we to order the various
noncommuting factors, and how are we to interpret (y*m) ~'
when this denominator becomes an operator? Classically
this denominator causes no problem, because y* is intrinsi-
cally positive, and even when y— 0 the ratio y*u/y stays fin-
ite.

Because of the above difficulties we adopt a different
approach, that of defining the energy-momentum operator
Pop by its eigenvectors and eigenvalues. Guided by Klein—
Gordon theory, we seek a complete orthonormal set of states
| Wiy YEH hys» labeled by a future pointing four-vector k*
lying on the mass shell (14), and additionally by a charge
index ¢ = + 1. Thus

(\ykq |\I’k’q'> =¢€6(k—k')8

Zfdsk W) (V| =1,

where [ is the unit operator in 77, . Having found such a

set we define the momentum and charge operators by

qq'?

(52)
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poe =3 f dS, | W, ik (W, |, (53)
q

0= zdek\\l’kq)eq(‘I’qu (54)
q

By construction, |V, ) is a simultaneous eigenstate of these

operators with eigenvalues #ik * and eq, respectively.

The above program is also subject to ambiguity. We
must first decide how the Hilbert space of physical states
A onys 18 related to #°,. Then we must decide which of the
infinite number of complete orthonormal sets satisfying
(52) is the one that corresponds most closely in the classical
limit to the classical system described by (7).

Section I1I B considers the specification of 77, , based
on resolution of ¢(y )€, into particle and antiparticle am-
plitudes. Section III C deals with the construction of com-
plete orthonormal sets and then the remaining parts of Sec.
ITI concern the application of these sets to (53) and (54).
The modifications necessary for the incorporation of electro-

magnetic interactions are considered in Sec. IV.

B. Particle and antiparticle amplitudes and the

specifications of 77,

Let us first see how to accommodate antiparticles in the
classical Hamilton theory. A free classical particle has a fu-
ture-pointing timelike momentum vector p?%, so that the
quantity D = yw = yp° + y*p is necessarily positive. The
same is true for an antiparticle. Thus classically we could
treat particle and antiparticle as two disjoint systems, with
conjugate variables y,,m, and y,,m,, respectively. In this
approach the phase spaces are restricted by y,*mw, >0 and
y,*w, >0, and the same functional form (7) applies to the
evolution generators p*(y,,m,) and p*(y,,w,), which are
interpreted, respectively, as the particle and antiparticle mo-
mentum vectors. However, particle and antiparticle can be
treated alternatively as a single system by exploiting Feyn-
man’s idea that an antiparticle behaves like a particle travel-
ing backwards in time. In this alternative approach we en-
large the classical phase space to allow all values of y*, both
positive and negative. The variables y and 4 evolve accord-
ing to

Y _piyp), L ap,), (55)
dr dr

with the function P*(y,w) defined by
P =1 (ym) N (m* + m?cP)y, (56)

P=mw—1(ym) '(m+ m’)y.

Here P*(y,w) takes the same form as p”l(y,‘rr) in (7), except
that it is now defined for both signs of y-m. If y»mw >0 we
interprety, =y, 7, = was the conjugate variables for a par-
ticle with momentum p; = P*. On the other hand, if y»w <0
then we have an antiparticle with conjugate variables
y, =y,m, = — wand momentump’ = — P* Ineach case
the momentum p* = sgn(y-m)P"is future pointing timelike,
but the evolution generator is P* rather than p*. The charge
is e sgn(y-w) (Ref. 3).

The above suggests that in quantum theory, particles
and antiparticles should be associated, respectively, with the
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positive and negative eigenvalues of =, the operator analog
of D /# defined by (29). As we saw in Sec. II B, = has a
complete orthonormal set of eigenfunctions v, (y), given
by (45), the eigenvalue o taking all values in { — 0, ).
Any element /(y)e#", has the decomposition

vy =v¢,.(y) +¥_(¥),

where

(57)

Y. (y) =f do | d*W 0, (¥) Wows¥),,
0

v_(y) = r do f AW 0, (3) (Vg s¥),-
The above equations may be written

Y. (y) =0(2)(y), ¢v_(y)=0(—2)y(y),

where the step functions ©(Z) and ©( — X) are projection
operators with matrix elements

ylo()|y" =J dUJdZW U (¥)0E, (¥,
(¢}

_ i6(5,9")
2ayy' [log(y/y') + i€]’

1 ) i 5(9,%)
=—p(y—y)+—FP—2 |
2 20 ' log(y/y')
(58)

{y|O(—=2)|y") = (y|O(2) |y )* (59)

In (58) €— 4+ 0 and & denotes the principal value. An
equivalent form is

O(+ )y =Luy) +— o [ ¥leyda
2 27 o —loga
(60)

Corresponding to (57), #°, has the decomposition
X, =T e,

where the two subspaces 7} and 7 are themselves Hil-

bert spaces, whose elements satisfy ©(2)y, = ¢, and

O( — Z)yY_ = ¢_, respectively.
It remains now to relate ¥(y)e#”, to physical states

(61)

|W)eF .- By analogy with Klein—-Gordon theory let us
suppose that physical states |¥) can be represented by
A (y)]
Y(y) = ) (62)
Y, (¥)

with ¢, (y) and ¢, (y) being the particle and antiparticle
amplitudes. The appropriate scalar product is

3
(W, %) phys =fdy—y (LW, (V) + (M. () ]

(63)
Let us make the identification
Y, (y) =¥, (y) =0 (2)¢(y),
Y (¥) = [Y_(M]*=O0(2)P*(y), (64)

— + +
Hopnys =H 5 ®H ).

Thus both components of the physical state ¥(y) be-
long to the positive eigenspace of 2:

O(Z)¥(y) = ¥(y).
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This is the quantum analog of the classical result that both
y,*m, and y,*w, are positive.

The hypothesis given by (62)—(64) is similar to that of
Klein—-Gordon and Dirac theory in that particle and antipar-
ticle amplitudes must be projected out from the coordinate
space wave function in order to define a physical state. We
have a one-to-one mapping, albeit nonlinear, between the
points W (y)e#",,s and the points W (y)e#",:

Y, (y) Y(y)

Y(y) = =0(3 [ ,
) Lﬁa(y) ( )¢*(y)

U(y) =¢,(y) +¥¥(y).

The momentum operator pg,, whose explicit form we
have yet to determine, governs the evolution of the physical
states W(y) according to (5). Analogy with the classical
evolution equation (55) suggests that there should also exist
an operator P{, which determines the evolution of coordi-
nate space wave functions ¥(y) according to

(65)

iﬁ%=v,{PéP¢. (66)
ar

Note that the operators p&, and P{, act in different Hilbert

spaces, viz # ., and #°,, respectively. We now consider

the problem of how to give effect to the ansatz (53) for deter-

mining p&,, and how to specify P{p in terms of the latter.

C. Complete and orthonormal sets

We seek complete, orthonormal sets of states |\I/kq)
€7 oy, satisfying (52), which states are to be interpreted as
energy-momentum-charge eigenstates according to (53)
and (54). Let ¢, (y) be the element of 7, from which
W, (y)is derived by the prescription (65). Following the
ideas of the previous section, we assume that the particle
states and the antiparticle states correspond, respectively, to
the positive and to the negative eigenspaces of 2. Thus

Ot (¥) =¥, (¥),s

o(— 2)¢'k( 1 (y) = ¢k( - (y).
Motivated by the desire to achieve maximum particle-anti-
particle symmetry we make the additional assumption
Yu—1, (¥) = 9%, (y), which is consistent with (67). For
brevity we write 1, (y) for ¢, (y) so that (67) becomes

U, (V) =4 (y) =¥k, (¥),

O (¥) = ¢ (¥)-

The orthogonality and completeness relations (52) now re-
duce to

(Y ¥y ), = €.6(k — k'),
fdsk b (DUEY) = (YIOE)y).

Since ¥, (y)e2;, ©(2) acts as the unit operator in the
completeness relation (70). [See (58).] Having found a so-
lution of (68)—(70) we can reconstruct ¥ e (¥) by

(67)

(68)

(69)

(70)

(¥)

Y, (y) = [¢k0y ] (71)
0

Pren ) = [xﬁk(y)] ' (72)

1332 J. Math. Phys., Vol. 28, No. 6, June 1987

[See (62), (64), and (65).]
The functions W, (y) define a unitary mapping
between the points W (y)e#",,, and ¢(k)e”, [see (17)]:

a, = (‘I’kl"l’)phys = (¢k’1//)y,

(73)
bk = (\I’k(~1)’\y)phys = (lpk"lﬁ*)y'
The inverse mapping is
V) = [ a5, [a b ) + b ¥y D],
(74)

b(y) = f dS, [act (¥) + b FEW].

We now show that angular momentum considerations
dictate that ¥, (¥), and hence ¢, (y), be taken as a function
solely of the SO(1,3) scalar

(= —ky'=ey+ky. (75)
[This is analogous to the result of nonrelativistic quantum
theory that the function which maps coordinate space onto
momentum space, namely (27) =302 exp(/k-x), depends
solely on the SO(3) scalar k-x.] Let us derive the form of the
angular momentum tensor operator using Wigner’s P, pre-
scription.® An infinitesimal Lorentz transformation parame-
trized by the antisymmetric matrix @

yi =y + 0t
changes the functional form of ¥(y) to

V'(y) = (I —Liwg, j;*)¥(y),
where the components of the angular momentum operator
Ji are

v ?

31 . a
(j§3’1;1,1;2) - —lﬁyXE,
P (76)
(jOl’jOZ’jO3):l‘ﬁy .

¥ ¥y ¥y ay

We now demand that the unitary transformation (73) and

(74) should transform j* given by (22) and (23) into j}*.
This will be the case if and only if

(Ji 4+ 7 )W, () =0.
The above equation is the condition that W, (y) is un-
changed by a combined Lorentz transformation of the two
vectors k *,y*, which implies that ¥,, (y), and hence ¢, (y)
are functions only of the scalar § defined by (75):

Y (¥) =f(0). (77

Let us now expand ¥, (y) in terms of the complete, or-
thonormal set v,,, (y) given in (45). Only terms with >0
are needed on account of (68). The expansion coefficients
are

¢k¢7w = (an"/’k )y7

=F(0o) (e, + kw)” !, (78)
where
F(o) = (277)’”2f0wf(§)§ ~dg.
Hence
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¢k(y) =f dafdzw ¢ko’wvo'w (Y),
0

- (217)‘”2Jm do F(o).“ 1, (79)
0

The function F(o) must be chosen such that the orthogona-
lity and completeness relations (69) and (70) are satisfied.
Substituting (79) into these equations yields

f |F(a)]2dajd2w(ek +kw) (e +Kw)o!
(¢]

=€.6(k—k'), (80)
dek F(U')F*(o-')(é.k +k.w)i¢7—l(ek+k.w/)7,’g'_1
= 80— )B(ww). -

The form of these equations is similar to that of (49) and
(30), except that here only positive values of o and ¢’ are
allowed.
We now prove a theorem derived from (49) and (50).
Theorem: A solution of (80) and (81) is given by any
function F(o) whose modulus is (27) ~3%g, ie., we may
write

F(o) = 2m) 3 2jge™), (82)

where g(o) is an arbitrary real function. The proof of this
theorem depends on two lemmas.

Lemma 1: For any F|(0) and F,(o) defined in
— o <0< o, the integral

0>0,

J= f F¥(o)F,(0)do

dezw(ek +kw) " Ne, +Kow)io!

is unchanged if k and k' are interchanged.
Lemma 2: The integral J of Lemma 1 is given by

J=J [F¥(o)F,(0) + F¥( — o)F,( —0)]do
(4]

dezw(ék +kw) "7 (e +kw)e

Lemma 1 is proved by observing that J is the Lorentz invar-
iant scalar product ( f}, f3),, where

fl(Y)=(27T)—1/2f da,Fl(o,)(_k,{yl)ia—l’

fZ(y)=(27T)‘l/2J do.Fz(o,)(_kAy/l)ia—l‘

Since both k, and k ; lie on the mass shell (14), the only
scalars we can form from these vectors are K%k} and
« = mc/# (Ref. 7). Hence J is a function only of these sca-
lars, and is consequently symmetric in k; and k }, proving
the first lemma. To prove Lemma 2, divide the range of inte-
gration over ¢ into the two intervals (0, ) and ( — ,0). If
in the second integral we replace ¢ by — o and invoke
Lemma 1, then we obtain the form for J given by Lemma 2.

With the aid of these lemmas we can now prove the
theorem. Applying Lemma 2 to (49), with F,(0)
= F,(0) = o we obtain
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(2m) 3 J.w o’ dO'JdZW(Gk + kew) !
(V]

X (€ +kw)° '=¢8k —Kk).

With the restriction to positive o values (50) becomes

(83)

Q2m) 3 dek oo’ (€, + kw)o!

X (& +kw) =60 —0)6(w,w). (84)

From (83) and (84) we see that any F(o) of the form (82)
will satisfy (80) and (81), which establishes the theorem.

To summarize Sec. II1 C, a complete orthonormal set of
states W, (y) is given by (71) and (72), with

U (y) =f(— k")
= (277')“2ifw do oe® O (—ky*)° =1,  (85)
0

g(o) being any arbitrary real function. Some examples for
particular values of g(o) are given in Appendix B. The ques-
tion of what function g(o) should be adopted will now be
considered.

D. Choice of the phase function g(o)

Equations (71), (72), and (85) together define a com-
plete orthonormal set of states W, (y). Consider an arbi-
trary element W(y)e# ,,, derived from the element ¥ (y)
€77, via the mapping (65). According to (53) the action of
the momentum operator in #°;, , is

(¢k’¢p )y]
(¢k’¢a )y '

To be consistent with (66) the evolution operator in #°, has
to act according to

Pyd(y) =fdsk #* [y (9) (Do),

P ¥ (y) =stk Be (9) Ak (86)

—PE(V) (W), ] (87)
Now any choice of the real function g(o) gives rise to a
unitary representation in 57, of the Poincaré group,
based on the infinitesimal generators pop and /i [see (76)].
This representation is unitarily equivalent via (73) and (74)
to the direct sum of two copies of the standard mass m spin-
zero representation,® corresponding to particle and antipar-
ticle. A representation is likewise generated in 57, by P
and ji.

However, we cannot leave g(o) arbitrary if we wish the
quantum theory to correspond in the classical limit to the
formalism based on the classical momentum vector of (7).
We want y to correspond to the light cone coordinate defined
by (2), with |¢/(y)|? d *y/y representing the probability that
a measurement of this coordinate will yield a value in the
interval (y,y + dy). In what follows we present a heuristic
argument which makes plausible the particular choice

glo) =arg[T'( —io)],
Y () = (2fr)‘2fr doo(r~'osinh7o)'/>  (88)
0
XT(—io)(—ky)e 1,
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where I" denotes the usual gamma function.

Our starting point is the observation that there exists a
classical canonical transformation which transforms the
classical evolution generator P* of (56) into — P* The
transformed variables I, Y#, with Y° = — |Y|, are derived
from the generating function mc(2y, Y*)'/2, and take the
form

Y%= — (mc) 2%y,

Y = (me) “?[w’y — 2(y-m) 7], (89)
II = (mc)*w/n°.

Substitution into (56) leads to
PHYI) = — PYym), YIl= — ym (90)

Thus in the Y,II system, particle and antiparticle have inter-
changed roles. Double application of this canonical transfor-
mation leads back to the original variables.

These classical results suggest that there ought to be a
quantum counterpart to (89) in the form of a unitary opera-
tor W which interchanges the role of particle and antiparti-
cle wave functions in 77°,. Thus W should satisfy

WPEW't= — Plp, 91

Wi, =y, W=W"'=Ww"
An operator equivalent to (89) in 7, is
82
Y(C))P =K—2y?;71
a’ a J
toer ]S 2(p-2)
op Yayz 3y y 3y

where k = mc/#. These four operators are Hermitian in a
dense subspace of &°,, mutually commute, and satisfy
N1 Y &p Yip = 0. A complete orthonormal set of simulta-
neous eigenfunctions with respective eigenvalues Y+ (Y°

= — |Y]) is given by
w(y Y = (&*/4m)Jo([ 2679, Y4 ]V3). (92)

The eigenvalue property may be proved readily by di-
rect differentiation. The orthogonality and completeness re-
lations are

d3y i ATy __ ’
'—y—w(.V/lY)w(y/lY y=Y8(Y-Y"),

d’Y .
f 7 20 YHwy, Y*) =ys(y —y'),
which may be proved by methods akin to those used in Ap-
pendix A.

The appropriate definition of the action of W on
Y(y)es’, is then

(W) (y) =f

Applying (93) to ¢, (y) given by (85) we find (see Appen-
dix C)

3
d YY W, YY),

(93)

W) () = — (zfr)—szw do ge’s
(4]

I' (io)

_k —ia-l, 94
T (TF) (94)
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which coincides with ¥ (y) if
e®? = [T( —io)/T(io)]"?

= 4 (7 ‘o sinh 7o)’ ( — io).

Thus apart from a trivial assignment of sign, (88) is the only
choice of the set ¥, (y) for which the classical symmetry
property (90) goes over to the quantum symmetry property
(91) under the unitary mapping W corresponding to (89).
It does not appear possible to express the momentum
eigenfunctions ¢, (y) given by (88) in terms of elementary
functions. However only the asymptotic behavior for large
= — k,y" will be needed in this paper. The integrand con-
tains the factor exp{i arg['( — io) ] + io log £}, which, for
large &, oscillates rapidly except in the neighborhood of a
stationary point of the exponent. The only stationary point
occurs at the value of o =¢ — (12£) 7' 4+ O(¢ ~3). The
method of stationary phase then gives the asymptotic behav-
ior for large & as

ig 26 [ 1 1

W~ 5 120 24£2

+ 0(§_3)J- (95)

At the other extreme, when ¢ is small, the integral is domi-
nated by values of o of the order of — 1/log . The limiting
behavior as {0 is

4L, (y) ~ (log ) ™% — 2y(log §) ~* + O ((logd) ™),
(96)
where y=0.577 22 is Euler’s constant.

Further creditability will now be given to (88), by
showing that this choice of g( o) leads to the correct nonrela-
tivistic quantum mechanics limit (¢ — 0 ), and to the correct
classical mechanics limit (%-0).

E. The nonrelativistic limit

Consider an observer whose world line passes from
Z(7,) to 22 (7). If at proper time 7,/c the observer finds the
particle with the momentum eigenfunction ¢, (y), then
(66) predicts that at the later proper time 7/¢ his wave func-
tion will have evolved to

Ui (v,2) = ¢ (Vexpl — ik, [2(7) — 2 (79) ]} (97)
These functions satisfy the orthogonality relations

(¢k (y,Z), ¢'k' (y)z))y - eka(k - k,),
which may be written

[y staro. =506 -0, (98)

with

b (v:2) = (63) ™, (y,2).

We will interpret ¢ — o as meaning that both the dimen-
sionless quantities xy and x/k, with « = mc/#, become in-

definitely large. In this limit { = €,y + k*y becomes large
and we may use (95). The leading term is
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i (y,2) ~i(2m) "2 exp{ — ik, [y} + 2 (1) — 2*(70) 1}
~i27) 732 exp{ikex — i~ [mc? + #k?/(2m) )t

+ l.k/tzl (79) },

where x* = z*(7) + y* [see (2)], and x° = ct. Apart from
an irrelevant phase factor, the above is the usual form for the
energy-momentum eigenfunction in nonrelativistic quan-
tum mechanics (including the rest energy mc?). Note that in
the nonrelativistic limit the integration fd *y in (98), taken
over the past light cone 7 = const, reduces to fd 3x, taken
over the hyperplane ¢ = const.

F. The classical limit

Following Landau and Lifshitz,” we shall seek the clas-
sical limit by considering wave functions with large phases
and large wavenumbers. A quasiclassical wave function for a
particle is of the form

$(¥.2) =fdsk Ui (DA explifi='d (k) — ik, () }.

Here ¢ (k) is real, and we assume that 4 (#ik) and ¢ (#k) are
functions which differ from zero in regions where p* = #ik 4
has a macroscopic value, with k becoming indefinitely large
aswelet #i-0. Thus § = €, y + key is likewise large and once
again the asymptotic form (95) is applicable. Changing vari-
able to p = 7k and using (95) yields

i dap 1/2
A
(27)3/2ﬁ2J pO g (p)
Xexplii='[¢(p) — p,x* 1D, (99)

where x* =2*(7) + y* and p° = (p* + m3c*)"/% As #-0
the exponent in (99) oscillates rapidly, and we may use the
method of stationary phase. The stationary point is given by

9% _ 26 x° —x,

dp p
whose solution p = p, (x) is a function of x*. The stationary
phase approximation to (99) then assumes the form

¥ = Bexplii™'S(x)},
where B is a relatively slowly varying function and

S(x) = [¢(P) ‘P}.x/I ]pzp_,.(x)‘
The differential of (100) is

dS(x) = — (p,),dx".
Whence dS(x)/dx* = — (p, ), which substituted into the
identity p° = (p? + m?c®)"/? leads to the Hamilton-Jacobi
equation

aS [( aS)Z N 2]1/2

Z 4| =) +m¥?| =o.

Ix° ax
Thus a wave packet of quasiclassical form, whose dimen-

sions tend to zero with #, will follow the classical trajectory
of a free particle.

U(yz) =

(100)

IV. ELECTROMAGNETIC INTERACTIONS
A. Classical treatment of particle and antiparticle

When an electromagnetic field derived from a potential
A*(x*) = A*(Z" + y*) is present and the particle has charge
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e, the classical momentum p*(y,) is given by (8). This is
obtained from the noninteracting form (7) by the prescrip-
tion pt—p'— (e/c)A?, womp=m— (e/c)(A+§4°).
Note the identity’

(101)

where w” is the four-velocity of the particle at the point
where the past light cone with vertex z* intersects the parti-
cle trajectory. Thus (101) implies that y-m is Lorentz in-
variant and non-negative. To make the treatment more like
that for the noninteracting case, let us effect a canonical
transformation y,7w —y’,w’, which converts the relation y-wz
>0 into y-m'>0. Consider the generating function
F(Zy,m') =yw' + (e/c)y(Zhy), where y(z4,y) is to be
chosen to make yw; = y'*w’. We have

ymy = — mey,uw',

y'—_—.c_;?_ﬁ_::y’ Tr=a_F=ﬂ-'+Ea_X’
i Iy ¢ 9y (102)
P e T e
Then y-w; = y-n' provided y is any solution of
N S (103)
The general solution of (103) is
id
Y (y) = —J Y 4 *(z* +iy:-)dt, (104)
ry y Yy

where ¥ is an arbitrary function of z* and §. The theory
presented in what follows does not depend on the choice of
this function y. [See (114) and (121).] The transformed
evolution generator is then given by

o . ef o 8/1/)
am)=S(4°+
P c( az°
+1 (yn) T (mp)? + miP )y,

D(y,‘n")=£( —a—x)+‘rr'5
c

1
% (105)

__% (y.ﬂ')—l[(‘n,rE)Z_}_mch]y’

, e R dy
o= —-[A+ AO————).
E c( Y. dy

The above does not represent an electromagnetic gauge
transformation because X(z‘,y) does not depend on its argu-
ments solely through the combination z* + y*.

A like treatment may be given for an antiparticle, with
e— — e in all expressions. Thus we could treat particle and
antiparticle as two disjoint systems with conjugate variables
Y,,®, and y,,m,, respectively, with y,*w,>0 and y,w,>0.
The evolution generators p;(y,,w,) and p}(y,,m,) would
then be given by (105) with y-y,, #'—m,, and y-y,,
w' —1,,e— — e, respectively. However, just as in the nonin-
teracting case, particle and antiparticle may be treated more
elegantly as a single system, with the variables y, 7' now be-
ing in an enlarged phase space allowing both signs of y-7’.
Henceforth let us drop the prime and write = instead of w'.
The particle-antiparticle system then has the following clas-
sical description of its dynamics. The conjugate variables y,
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each vary over the whole of R’. As we change the here-now
Z* from which the past light cone is drawn, the variables y
and m evolve according to

gy 9n _ o p
az;‘ {y9P/1} az/l {ﬂ’ A.}:

where P* is given by

(106)

po=£ (A o+ a)() — (ym) " '(m} + m%) y,
¢ dz°
P= (A+ ax)+1'rg——()"ﬁ)“(1'r§+m2c2)y,
c a 2
e ~,0 OY
Tp=m——|A+§4° -2 }.
c ady
If yemr > 0, weinterprety, =y, 7, = m as the conjugate vari-
ables of a particle with p? = P*, and if y'w<0, y, =y,
m, = — 1 as those of an antiparticle with p} = — P* In
each case p* = sgn(y-w)P*.
Equation (107) gives P* as a quadratic function of e/c.
We may write (107) in the form

P* =P}, + (e/c)P?y, + (e/c)’PYy,, (108)

where P(O) is given by (7), P’(H) is linear in 4, and y and
P?,, is quadratic in these fields. Explicitly,

(107)

dy -
P?l) 35“+{X’P<0) — (ym) 1P‘((Q)Axy/1’

_ IV
Ph, = (2y-m) 1[(,40)2—( ’Eyl) ]yﬂ.

[ The transition from (107) to (109) is facilitated by use of
the identities {P%,, )} = g™ + (y»m) ~'V*'P%, andy, Py,
= —ym]

(109)

B. Invariances of the classical momentum function

The system (106) and (107) has a number of symme-
tries which one would expect to be preserved upon quantiza-
tion. These are summarized in (110)-(114) below, and may
be verified by direct computation. The evolution generator is
given by (107) as a function of y,m,e,4,, and y, which de-
pendence will be indicated when necessary by the notation
P*(y,med,,y). Recall that 4, is a function of z* + ", and
x any function of z* and y which satisfies (103).

Invariance of the sign y*m means

{6(ym),P*} =0, (110)
Self-consistency of the evolution equation (106) means

oP, dP,
+{P;,P,}=0. (111)
az a7 e
Charge conjugation invariance means
P,{(yﬂT’e’Ax,X) = —Pl(y’—ﬂ’_e,AK,X)' (112)
Electromagnetic gauge invariance means, for any A(Z
+,
a i dA
P (y’Tr’e’AK’x) P Y,‘ﬂ',e,A + a ,X A
(113)
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Invariance under changing y by an arbitrary function
M(Z',§) means

P/l (Y’Tr;e,AK)X)
)g?ﬂ.

114
Py (114)

e oM
=P s ——,6A4,,Y —
A(yfr+cay A X

C. Quantization

Our aim is to find an operator P&p acting in #°, which
is a quantum analog of the classical P* given by (107), and
which governs the evolution of #/(y)e”, according to

Y

i 5‘27 = Pop, ¥

We shall assume that the same relation holds between the
Hilbert space #°, and %, as applied without interactions
[see (57)-(65)]. Thus particle and antiparticle are again
associated, respectively, with the positive and negative ei-
genspaces % ) % ; oftheoperator £ = — i(y-d /dy + 1).
This hypothesis makes sense when the classical variables y
and m [designated ' in (102)] are chosen as in Sec. IV A,
because then the sign of y*ar determines the particle’s charge,
just as was the case without electromagnetic interactions.

Analogy with (108) suggests that P{, should be qua-
dratic in e/c:

Plp =Pl + (e/c)Phyy + (e/c)?Ply. (116)

Here P?,, is the operator defined by (87) and (88), and the
Hermitian operators P?,, and P{,, are functionals of 4, and
x which are, respectively, linear and homogeneous of degree
2. Let us henceforth omit the suffix OP from P, it being
understood that P* now represents an operator on %~ - This
operator is a function of z* and e, and a functional of the
fields 4, and y, which dependence will be indicated when
needed by the notation P*(z%,¢;4, ;).

In addition to requiring that P* should correspond in
the classical limit to the classical evolution generator speci-
fied by (107), we shall demand that the quantum counter-
parts of the classical symmetries (110)—(114) shall hold,
namely

(115)

[©(2),P*] =0, (117)
oP, ap)

% PP, ]1=0, 118

Ao ) 1ren 1e

[PH(eA )0 ]* = — P2, —edx)y*, (119)

PH(zeA,;x) =P"<z“,e;AK +§-ﬁ-;)( — A), (120)

P, (2 eAx) = exv( - %M>P/1 (#edx — M)

ie e M
Xexp(ﬁcM)+ PoR (121)
A consequence of (117) is that #°; and #°; [sce
(57)~(61)] are invariant subspaces of P*. This implies that
if Yye¥ , evolves according to (115), then there exists an
operator p* on 5%, such that ¥, the image in 5% ohys Of ¥
under the mapping (65), satisfies
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av
#—=p, V. 122
1 Ex Pi (122)
Explicitly,
P, (z',e4,;
A[’ﬁp]:[ /1( e,A X)¢p (123)
¢a P/l (z.u, '—e;AK;X)"/’a

where use has been made of (119).

The consistency condition (118) implies the existence
of a unitary operator U(z) =U(z,e;4,;y), a function of z
and e and a functional of 4, and y, such that

alu(z)
ozt

P, =i T2 Uiz, (124)

The wave function ¥ at the current here-now z* is related to
its value ¢, at an initial here-now z{ by

Y= Uz)U'(z,) 9, (125)
Note that if V'is any unitary operator which does not depend
on z*, then U(z) and U(z)V give the same results in (124)
and (125), which equivalence will be denoted

U2)V=U(z).

The symmetries (119) to (121) now become

[Uzedx)¥]* = Uz, — eds) v,

Ulsesd, ) = U zeid, + it - A). (126)

U(z,e4,;x) gexp( _ie% M)U(Z,e;AK;X —M).

The author has been unable to obtain any solution of
(117) to (121), or equivalently of (126), for which P* takes
the quadratic form (116). However a solution to first order
in e/c may be obtained by writing

U(z)—exp[ hc(H1+ H,+ - )]

Xexp[ i‘-’%] , (127)
1

and expanding the first factor as a power series in e/c, keep-
ing only the leading terms. Equating terms in e/c in (124)
yields

oH,
H P = (128)
az/l [ 1 (O)A] (1)2.
The classxcal counterpart of (128) is
dH
+ {H ,P } = P )
af' Cl (0)A (HA
5)( P‘((O)Aky/l
+{x. ——=,
o P y
(129)

upon using (109) [P, and Py, are now functions of
y,w]. A solution of (129) is

Ho =y +—f Pty [Au (2 45 — tPy)
0

— A (Y +1P)) 4t (130)
which may be verified by direct substitution. We now seek a
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Hermitian operator H, on 77°, which is an analog of (130),
and further, is consistent to first order in (e/c) with the
symmetries (117) to (121). Let us specify H, by its matrix
elements with respect to ¢, and ¥, the complete orthonor-
mal set of eigenfunctions of P¢,, defined by (88). An opera-
tor H, which satisfies all the required constraints is given by

3
(o H b, =j Y g () (¥)

v+ L [M Ko @ - -k
(o]

—Ak(z‘—y’w—tK‘)]dt}, (131)

K. =k +kg,

(¢taH1¢f' )y = (¢k’H1¢k’ )%, (¢f,H1¢kr )=0.
This form was found by trial and error, guided by the classi-
cal result (130). Finally, the matrix elements of P ,,; may be

calculated from (128):
aJ .
(¢k’P(l)A¢'k’)y Eﬂf—}“l(k’l —kﬁ)](lbk,Hﬂbk')y,

(¢E?P(l)/{¢t' )y = (l/'k’P(l)A.l/’k');"
WEP Y )y =

No satisfactory way of extending these results to second
order in e/c has been found.

(132)

V. DISCUSSION
A. Summary

In the previous sections we have arrived at the following
past light cone quantum picture of a charged boson of spin-
zero and nonzero rest mass. An observer at here-now z* as-
cribes to the particle an SO(1,3) scalar wave function
¥(y,2"), which belongs to the Hilbert space ,, defined by
(10). As z* varies the wave function evolves according to

Y

#Y —p
o 19

where P, is a Hermitian operator in #°,. The wave function
describes the quantum state on the past light cone with ver-
tex at z%, i.e., on the three-surface x*=z*+y*, with
|¢(y,2*)|d *y/y representing the probability that a position
measurement will locate the particle on the light cone
between y and y + dy (3 being normalized to unity).

An important role is played by the operator
3 = —i(y*d /3y + 1) and the associated projection opera-
tor ©(2). Particle and antiparticle states are eigenfunctions
of ©(ZX) with eigenvalues 1 and O, respectively, so that we
can resolve any wave function into a particle component and
an antiparticle component according to the prescription
(57). However, the Hilbert space of physical states 777, , is
not identified with 7, but is rather constructed by combm-
ing the particle amplitude with the complex conjugate of the
antiparticle amplitude. [See (62)—-(64).]

The evolution operator P, must satisfy the conditions
(118) in order that (133) be self-consistent. For a free parti-
cle (88) gives a complete orthonormal set of eigenfunctions

(133)
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of P, , which correspond to energy-momentum eigenstates in
Z onys- When an external electromagnetic field is present the
theory is less complete. In this case (131) and (132) specify

P, up to first order in the particle charge.

B. Alternative hypotheses

There are a number of places in the development of the
theory where a hypothesis different from the one adopted
might have been made. Particular examples follow.

(1) The probability density for finding the particle
might be taken as (|¢,|* + ¢, |*)/y rather than as |¢¥|*/y.
[See (65).] Note that these quantities are not the same,
though their integrals over all y are equal.

(2) Perhaps neither of these expressions for the prob-
ability density is valid and one should seek instead to find a
set of position eigenfunctions Wy (y) which span 77, ..
These should be labeled by a past light cone vector ¥* with
Y® = — |Y|, and satisfy the orthogonality and completeness
relations

(¥y,¥y) =Y5(Y-Y'),

phys (134)

d*Y o , [1 o]
J % ¥, (MYLY) = (y|O(=2)]y") 01l

We can then define a position operator in %

phys
d*Y
thys\ll(y) = f

and interpret |(¥,,¥) . |>d°Y/Y as the probability of
finding the light cone position three-vector y in the range Y
to Y + d Y. Note that the operator yqp of (11) acts in 7%,
not in ¥~ A possible candidate for ¥, (y), which satis-

phys*

fies (134), is

by

YA, (y) (Wy,¥)

phys

Wy ( )*st ( )[ tm]
y\y)= « U (y ¥, (Y) s
yo(y —Y)

— 2
—9(2) LJO([ZKZyAYA]l/Z)

4
[See (58), (60), (70), (91), (92).] With this choice, the
effective coordinate space wave function is

Yonys (Y) = (Vy,00) pys = ¢, (Y) + WY, (Y),
where W is the unitary operator defined by (93).

(3) One might identify #°, directly with the space of
physical states ¥, . In this case the momentum operator
would be ©(2)P,, the charge operator would be sgn(Z),
and yop given by (11) would be acceptable as the light cone
position operator. Such a theory would in fact be equivalent
with that of (2) above, with the correspondence ¥ — .
[see (135)]. This theory would be more akin to that of the
nonrelativistic Schrédinger equation rather than that of the
Dirac and Klein-Gordon equations.

(4) We could make a choice of phase function g(o)
other than that of (88). It would be seen from the arguments
of Secs. III E and II1 F that any g(o) which behaves asymp-
totically like — o log o+ o + O(1) for large o will lead to

(135)
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the correct nonrelativistic and to the correct classical limits.
An example of such a g(o) is given by (BS5) in Appendix B.
The price to pay if (88) is not adopted is that the operator W
effecting the symmetry (91) no longer takes a simple form.

C. Some unsolved problems

This paper leaves many questions unanswered, particu-
larly those relating to the measurement of observables. Sup-
pose the quantum state of an observer at the here-now z* is
|W), and he measures the observable represented by a Her-
mitian operator .#” which has a complete orthonormal set of
eigenstates |®,) with corresponding eigenvalues A,. One
would like to postulate that | (&, | W) |?is the probability that
the measurement will yield 4,,, and that if this eigenvalue is
obtained, then immediately after the measurement the state
willbe |®, ). However, how are we to interpret the phrase “a
measurement at here-now z*?” If the measurement occupies
negligible extension in space and time so that it can be car-
ried out by a single observer at z* then there is no difficulty.
Otherwise the observer at z* must collaborate with auxiliary
observers in other parts of space time. Various possibilities
suggest themselves: (1) a prearranged experiment, carried
out by a number of observers on the past light cone with
vertex at z*; (2) an unpremediated experiment, where the
observer at z* radios instructions to his collaborators to mea-
sure some quantity in their locality, in which case the experi-
ment involves a number of observers on the future light cone
of z*; and (3) independent measurements made by different
observers on a spacelike three-surface through z%, the results
being communicated to the central observer.

Type (1) experiments comply most closely with the
spirit of the present formalism, and have the advantage that
all the data from the auxiliary observers reaches the central
observer simultaneously at z*. However, the experiment can
only involve a finite region of the past light cone and the
central observer must plan the experiment sufficiently in ad-
vance to enable him to instruct his collaborators.

With experiments of type (2) and (3) the experimental
results from the auxiliary observers will reach the central
observer at different times, all in the future of z*. As each new
piece of data arrives the central observer should presumably
update his quantum state, but we lack a prescription for do-
ing this. It seems likely that we shall need a description in
terms of density matrices rather than of pure states to resolve
this problem. That a solution to the problem of measurement
in relativistic quantum theory may require the introduction
of density matrices has been suggested by Houtappel, Van
Dam, and Wigner.'®

APPENDIX A: ORTHOGONALITY AND COMPLETENESS
RELATIONS

Proofof(37)-(39): Since k * and k *"both lie on the mass
shell (14), k* + k*' is future pointing timelike and there
exists a “center of momentum® inertial frame in which this
sum vector has no spatial component, i.e., k* = (¢, k) and
k* = (€, — k). In this frame (37) becomes
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(up,2uy ), = 3w, Zuy. )y + 3 2u,u,0 ),
= (277)“3f €.e %Y d3y

=¢€,6(2k) =€, 6(k — k). (A1)

Since each side of (A1) is an SO(1,3) scalar, the truth of this
equation in any particular inertial frame implies its truth in
all inertial frames, and hence (37) has been proved. Similar
proofs may be given for (38) and (39).

Proof of (40): The left-hand side of (40) takes the form

_ ik Ay — vt Ay —
S (2m7) 3/2dek[e ik (yy J’A)_e' $71 yx)]

=2ZA(p, —y3). (A2)

The function A occurs in quantum field theory in connection
with spin-zero field commutators, and may be expressed in
terms of Bessel functions.'! Putting in the explicit form for A
and applying the differential operator X then yields (40).

Proof of (50) and (51): The Beltrami operator belonging
to the mass shell (14) is proportional to the operator

‘%/‘ = % h_znivn;‘pjﬁuﬂ"7

=) -(egn)
—(ex2-Y —(e. 2-Y
(Xak Ik

[See (22) and (23).] Direct computation shows that
( —k*p,)?'is an eigenfunction of ¥ with eigenvalues
1 + o2, if y* is any vector lying on the past light cone. Now
%" is Hermitian with respect to the measure dS, = d°k/e,,
which implies orthogonality for eigenfunctions belonging to
different values of o%. Hence

(A3)

JdSk( _k/ly;t)ia—l( __kyy;‘) —io' — 1

=C/6(oc—0') +Cldlo+ 7o), (A4)
where C; and C, are functions of o, y,, and y; which are
SO(1,3) scalars. A scalar function must yield zero when

operated upon by any component of the appropriate total
angular momentum tensor. Thus

J J
YX—+ Y'X—,)Cs =0,
( dy dy

a d
y oty 2, =0,
ot s
with s = 1,2. [See (76).] The general solution of (AS5) is
readily found to be

C.=a,(o'y) + (') 7 'B,(oy/y)8(3.§), (A6)

where a, and 3, are arbitrary functions of their arguments,
and §(§,¥') is the Dirac delta function for the surface of a
unit sphere. Multiplying (A4) by y —“*'(y') *! yields

(A5)

dek (€ +k'9)ia“1(€k +k¥') —i=t

=y (y/y") " “C\6(cg—0o')
+ () TTICE (0 + ). (A7)

The left-hand side of (A7) is independent of y and y', and
hence so must be the right-hand side. The only way in which
this independence can be consistent with (A6) is for
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a, =0, B,=B(y/y)"
a,=a(y'y) ", B=0,
where a and 3 are functions of o only. To find these func-

tions, apply the integration fd %y’ over the unit sphere, to
both sides of (A7). The left-hand side yields

87 (00’) WKk~ [6(0c—0) — 6o+ ') ],
and the right-hand side
BS(o—0') — 2miao™12°8(0 + o).

Identification of the coefficients of the two delta functions
then gives f = 87°0 72, a = 47%ic— " (k*/2)*. Thus

(A8)

J‘dSk (6 +k§) e, + k')~ 1
=870 28(3,)8(c — o)
+4772i0—1(K2/2)i0(1 _S\“i,:)ia~16(a_+o_,).

Multiplying (A9) by oo’/ (167°) and making the identifica-
tion w = §, w' = §' then yields (50) and (51).

(A9)

APPENDIX B: COMPLETE ORTHONORMAL SETSIN 7,

In Sec. III C we considered function sets of the form

1/’k (y) = (27T)—21'J‘°c> da-o-eig(a);ia—l, (B1)
o

where { = — k,y*. These functions belong to the eigenvalue
+ 1 of the operator ©6(X) defined by (58). It was shown
that for any choice of the real function g (o) the functions
¥, (y) and ¥ (y) form a complete orthonormal set in 77

(¥ ), = (UEYE), = €6(k— k'),
Wt ), =0,

fdsk [0 (NPEW) + B2 (7)] =28y — ¥).

(B2)

We exhibit here the form taken by ¥, (y) for three parti-
cular choices for g(o) (the case g(o) = arg(I'( — io) ] was
discussed in Sec. III D):

eig(a) — l,
Y (y) = [47%i(log & +i€)*] 7!, €0, (B3)
d
=0(2)2m) ' =6(& —1);
(2)(2m) 7 (=)
e® D = _TI'(—iog)/T (io),
P (y) = 6(3) (2m) ~ (26 V)5 (B4)

%@ = 7~ '2['(§ — io) [cosh(47o) — i sinh(}mo) ],

b (¥) =e(>:)(2w3)-”2§£(§”2sin§)- (BS)

If we drop the requirement that our functions be eigen-
functions of ©(X), then we can find further orthonormal,
complete sets from a generalization of the theorem given by
(82). The more general result is that any set of functions
Ui, (¥), g = 1 or 2, of the form
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v, (¥) = (2m) % Jw dov(o)t® !,

vkz(y)=[(21r)”2ifw do sgn(o)v(o) ! *, (B6)

where v(0o) satisfies
)|+ [v(—)|* =0,

are orthonormal and complete
(VrgoVhog )y = €Ok —K)S,,,

Zdek Vi (WIVE, (¥)) = ¥6(y —¥).
q

This theorem is proved by techniques similar to those
used to establish (82). Two examples of sets of type (B6) are
furnished by (B7) and (B8) below:

v(o,) — (277,)—]/20_1“(% _ ia_)el/2ﬂ1¢7+(l/2)i),

d (B7)
Vi (¥) = (27r)‘3/2d—§ (& V%);
)= 0 By g i,
v (y) =277 M 3,1,i5), (B8)

=277 (1 + i) o( 4 8)

— G301V,
In (B8) M denotes Kummer’s confluent hypergeomet-
ric function. In neither of the above examples is the function
Ui, (¥) expressible in elementary form.

APPENDIX C: PROOF OF (94)

Because (94) has manifest Lorentz invariance, it is suf-
ficient to prove it in the inertial frame in which k*
= (x,0,0,0). In this frame

Wi, (y) =f Ydyd®¥ w(y, Y*)Q2m) %

XJ do o€ (kY)7 1, (Ch)
0

The function w(y, Y*) may be expressed as the integral
transform

.2 =)
wy, Y =§:;2—f do’
INC)

T(—io')
(C2)

—io’ — 1
(o)
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Upon substituting (C2) into (C1) one obtains the product
of the two integrals

JdY Yie-o=1=278(c —0a'),
S 1 N —ic—1
fsz[7(1 —5~Y)] = 4mioc™ ",
This leads to
Wi, (y) = — (217)_2if do 0e®'?
(¢]

% I'(io)
r'(—io)

(K —iafl’

which is just (94) in this special inertial frame. Invoking
Lorentz invariance, (94) holds generally.
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It is proved that if H = — V> + ¢(x)>0,Im ¢ =0, |g(x)|<c(1 + |x]|) "% c = const >0, a > 2,
then zero is not an eigenvalue of H. An example is given of H>0, with zero a resonance (half-
bound state) and g = ¢(|x|) compactly supported and integrable. An example of a potential

g = O(r~?) is known, for which H>0 and zero is an eigenvalue. This shows that a > 2 is the
optimal condition for zero not to be an eigenvalue of H>0. If the condition H>>0 does not hold
and H is an operator in L ?(R?), then zero can be an eigenvalue even if geC . If H is an
operator in L >(R') orin L *(RY, ), R', = [0, ), then zero cannot be an eigenvalue of H
provided that a > 2; here conditions H>0 and Im g = 0 can be dropped. Global estimates of the
Green’s function of H from below and above are given.

I. INTRODUCTION

In Ref. 1 Newton asked the following question. Let
H= —V'+gq(x), Img(x)=0, xeR’ [(1+|x])
X|g(x)|dx < 0, f = fg,. Assume that

H>0. (1)

Can O be an eigenvalue of H?

The assumption about the decay of g(x) can be relaxed:
1t is sufficient to assume that for all sufficiently large x the
estimate

lg(x)|<e(1+ |x]) ¢

holds and that geL 2. By ¢ we denote below various con-
stants. The assumption (*) (1 + |x|)|¢(x)|dx < o means,
roughly speaking, that @ >4 in (2). On the other hand, (*)
allows local singularities in a neighborhood of infinity,
which are excluded by (2). Since assumption (2) covers
most, if not all, of the potentials of interest which decay at
infinity faster than |x| ~2, we will use this assumption.

The question raised by Newton was discussed in Ref. 2,
where it was proved that if ¢ > 3 then the answer is no. The
assumptions on ¢ in Ref. 2 were given in terms of weighted
L? spaces. Our argument is different from the one in Ref. 2.

The purpose of this paper is to give the exact value of a for
which the answer is no. We prove that ifa > 2, then the answer
is no and if a <2, then zero can be an eigenvalue of H>0.

The second part of this statement is known: It is shown
in Ref. 3 (p. 375) that for central potentials g = g(r),
r=|x|, if HY =0, ¢ =r 'u(r)Y,(x°), where Y, is the
spherical harmonic x° = xr~', then u = O(r ™) as r— .
Therefore yeL *(R?) provided that /> 1. This conclusion
does not use assumption (1). The potential g(7) can be cho-
senin C§.

If I=0, g=q(r), Img=0, is compactly supported
and integrable in a neighborhood of the originand (1) holds,
then zero can be a half-bound state (a resonance) although it
cannot be a bound state.

In the one-dimensional case, if condition (2) holds and

r>0, uel?[0,0), (3)

a>2, c=const>0 (2)

u" —q(ryju=0,

1341 J. Math. Phys. 28 (6), June 1987

0022-2488/87/061341-03%02.50

then ¥ = 0. This conclusion holds without assumption (1)
and without assumption Im g = 0.

We prove that the Green’s function G(x,y) of H under
the assumptions ¢(x)>0 and (2) satisfies the global esti-
mates

clx —y| T '<KG(xy)<(4m|x —p|) 7', e=const>0. (4)

The low energy scattering has been studied in Refs. 4
and 5.

Il. THE RESULTS

Theorem 1: If H>0 and a > 2, then zero is not an eigen-
value of H.

Prooff Let H=H,+gq, H,= —V) Hy=0,
el 2(R*). Then ¢ > 0, being the ground state of H. Let us
first assume that ¢(x) = — p(x) and p(x)>0. If q(x)

=q,(x) —g_(x), where g, =max(0,g(x)), g_(x)
= max(0, — g(x)), then we can use a similar argument tak-
ing p(x) =¢_(x) and Hy = — V? + g, (x). The key esti-
mate for the Green’s function of the operator — V? +¢q_.
that is needed for the proofis the estimate (4). This estimate
is proved in Lemma 2.

Step 1: If g(x) = — p(x), p(x)>0, then HY = Ocan be
written as

Yy=Hg P¢=Jgp1//dy, g=Wmx—y)~"'. (5)

Since ¢ > 0 and p>0, we have py>0 and
¢=(4ﬂ|x|)_1fp¢dy+o([x|*’), x| > 0.  (6)

Estimate (6) is proved in Lemma 1.

If YL ? then (6) implies that fpy dy = 0. Since py>0,
this means that py = 0. Therefore V? = 0 and yeL *(R?).
Thus §|V¢|?> dx =0 and ¢ = 0. The same conclusion fol-
lows from the equation py = 0if p #0 on an open set. On this
set ¥ = 0 and, by the unique continuation property for ellip-
tic equations, ¥ =0.

Step 2: fg=¢q, —p(x), Hy= — V*+gq,, and H,G
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= §(x —y), then G satisfies estimate (4) and (5) holds
with G in place of g. Therefore

clxl = [ ppy + o0z

<Y< (4r|x)) ! Jpz//dy +o(|x|™h, |x|-w. ()

If $eL ?, then fpy dy = 0, and the rest of the argument is the
same. Theorem 1 is proved.
Lemma I:Ifa > 2 and yeL *(R?), then (5) implies (6).
Proof: One has

i<an( [ 1x—s1=lpras) ([ ar)”

<e(l+[xh)~~ (8)

Here and below ¢ denotes various positive constants, the first
integral in (8) was estimated with the help of inequality (2),
and the inequality p > 0 was not used. From (5) and (8) one
obtains

%= (drjx]) " f dy py(1 + O(e))
|yl <€lx|
+ 4r|x —y|) " 'pydy: =J, + J». (M
¥l > elx|

HereO<e=¢€(r)-0,€e(r)r— oo as7 = |x| - . Sincea > 2
and (8) holds we have (pyYdy< . Therefore J,
= (4r|x|) " 'sdy p + o(|x|)~'. Let us show that J,
=o(|x] ') as |x| > . One has

Al 1
Jz<CJ dtt2(1+t)—(a+1)f (rz+t2_2rts)~l/2ds
€r 1

<Cf di(1+ )= ' Qrey~r+t—|r—t|]

<cr"[J dt(l +¢) ~ %2t +J dt(l +¢t) ~%2r

Ler ¢t 4o, (10)

Here s = cos 6 and we used the spherical coordinates with
the y; axis along the vector x, |y| + ¢. Lemma 1 is proved.

Lemma 2: If ¢ >0 satisfies estimates (2), with a> 2 for
|x|>R, where R>0 is an arbitrary large number, and
geL %, then the Green’s function of H = — V? + ¢g(x) sat-
isfies estimate (4).

Proof: The right inequality in (4) follows from the maxi-
mum principle. Indeed, first note that G > 0: If G(x,,y,) <0,
then, since G(x,y,) > + « as x-y, and G(x,p,) -0 as
|x| = 0, the function G(x,y,) attains a nonpositive mini-
mum at a certain point £ #y,. Since G=%const, g0, and
V2G = ¢G in a neighborhood of £, we have a contradiction
which proves that G(x,y) > 0. Since G = g — fgqG dz<g, we
conclude that g>G.

Let us prove the left inequality (4).

We have

G(xy) =g(xyp) — fg(x,Z)q(Z)G(z,y)dz. (11

Suppose that the left inequality (4) does not hold. Then
there exist sequences x,, and y, such that
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X, =y, |G(x,p,)<n™!, n—oo. (12)

We will show this is impossible, so that (4) holds with some
¢>0. There are three cases to consider.

Case 1: There exist numbers m and § which do not de-
pend on #, such that |x,|<m, |y, |<m, |x, —y,|>6>0.In
this case choose x,, —x,, y,, =, and pass to the limit in (12)
to get G(xyy,) =0, which is a contradiction since
G(x4,0) > 0.

Case 2: There exists a number m such that |x,|<m,
[y.|<m, and |x, —y,|—0. Then choose x, —Xx,,y, =y
multiply (11) by |x — y|, setx = x,,, ¥y = y,, and pass to the
limit #— « to get 0 = (47) ', which is a contradiciton.
Here we used lim|x, —y, |fg(x,,2)9G(z,y,)dz =0, which
holds since the integral is bounded.

Case 3: Either |x,|— o or |y,|— o, or |x,| > o and
|V.|— 0. From (11) and (12) one obtains

0= (4m)~! — lim|x, —p,| jg(an)Q(Z)G(Z,yn )dz.

(13)

If |x, — y,|<m, where m does not depend on n, then the

limit in (13) is zero since g(x,,,z) = (47|x, —z[)’l—»O as

|x,] = o0, and G(z,y,)<(47|z — y,|) "'=0as |p,| > «.In

this case Eq. (13) becomes 0 = (47) ~', which is a contra-
diction.

If |x, —p,|— o, then

lim|x, —y,| fg(x,.,Z)q(Z)G(z,yn )dz

. dz
Klimelx, —y,|
<R |X, — 2{|z =y, [ (1 + |2])*

J' dz

+

o>k [x, — 2|y, —2[(1 + [2])°
<climlx, —y,|-0(|x, —y,|' %) =0.

So again Eq. (13) leads to a contradiction. Therefore (12)
cannot hold and the left inequality (4) is proved (cf. Ref. 6,
p- 314).

Remark: In the one-dimensional case if Hy
= —¢" +q(MNY=0, r>0, a>2, and YL *[R, ), then
¥=0. Here R > 0 1is an arbitrary (large) fixed number. This
conclusion holds without assumption H>0 and without as-
sumption Im g = 0. Indeed, the differential equation implies

Yy=A +Br+f (t — r)gy dt, (14)
where 4 and B are constants. If el ?[R,« ) and a > 2, then

fm (t—ryqydt

<(f t?(1 +t)””’dt)l/z'(J:w[zﬁ[zdt)m

=o(r °*"), asr- + .

Therefore (14) and yeL *[R,« ) imply that 4 = B =0. If
A=B=0, then (14) becomes a homogeneous Volterra
equation for ¥ and therefore ¢ = 0.

Remark 2: (a) Although, as we stated in Introduction,
itis shown in Ref. 3 that there are central potentials such that
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V2 — g = 0, ¥eL *(R?), no specific examples are given in
Ref. 3. We give such examples and show that g(r) can be
choseninC ¢. Thecorrespondingyy = A(r) Y, (x%)eL (R ?),
x° = xr~!, The construction is simple. Take ~(r) = r~2 for
r>1, h(r) >0 for 0<r<1, heC= . Define ¢ = ¥~ 'V?. Then
geC= and g = O for > 1 since V?r~2Y, = O for > 1. Clearly
yYel 2(R?). A similar example is in Ref. 7.

(b) An explicit example of an integrable near r =0
compactly supported g(r), such that >0 and zero is a half-
bound state can also be constructed. One defines ¢ = r~ ! for
r>1, ¢ =r'u(r) for r<1, and chooses u(r) so that g(r):

= ¢~ 'V is integrable and H>0. Note that ¢(») =0 for
r>1. The desired u one can choose, for example, in the form

u=r"(1+y—yr),withanyO<y< (2 —1)/2.

1. CONCLUSIONS

In this paper we prove that H>0 does not have zero
eigenvalue if (2) witha > 2 holds and may have zero if g falls
off as O(r2), r— . An example of compactly supported
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integrable potential is given for which >0 and zero is a
resonance.
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The structure of the Korteweg—de Vries hierarchy of evolution equations, generating
isospectral transformations, is elucidated by means of a study of its recurrence relations. For

the mth member of the KdV hierarchy, which can be written in the form ¥, =

_2Am+1,xy

where the 4, satisfy the recurrence relation 4,, ., =VA4,,, +14,, ¥V, —14, .., itis shown
that 4,, is a homogeneous polynomial in &' ¥ /dx’. A general combinatorial formula for the
coefficients of all the monomials entering A4,,, up to a set of constants determined by means of

a recurrence relation, is derived.

l. INTRODUCTION

The Korteweg—de Vries (KdV) hierarchy of isospectral
transformations was introduced by Lax' and by Gardner et
al.? It is very intimately related to the question of uniqueness
of spectral inversion. The connection with the inverse scat-
tering method has been particularly clearly studied with re-
spect to the original KdV equation.?

The classical limit of the KdV hierarchy was recently
discussed,* and it was shown that in this limit the hierarchy
reduces to the first-order equation

V.=fN"V, (D)
in which f(V) is an arbitrary function of ¥. This equation
generates an isoperiodic transformation of ¥V(x) = V(x,0)
into V(x,t). Thus, to each f( V) corresponds some isoperi-
odic transformation. It was also shown in Ref. 4 that if the
two isoperiodic potentials ¥'(x,0) and ¥(x,1) are given, the
form of f(V) generating the transformation between them
via Eq. (1) can easily be written down.

The complete KdV hierarchy has so far not been studied
extensively at all. In particular, the general form of an arbi-
trary isospectral transformation has not been explicitly de-
rived.

In the present article we present an attempt to derive the
explicit form of the higher-order members of the hierarchy.
General explicit forms are obtained, up to some numerical
coefficients for which a set of recurrence relations is derived.
The form of the results enables the association of an isospec-
tral transformation with any F(V), although the inversion
problem, concerning the determination of the form of F(¥V)
generating a particular isospectral transformation, has not
been solved.

A related problem, which has been worked out in con-
siderable detail, concerns the determination of the infinite
sequence of polynomial conservation laws of the KdV equa-
tion.>® In view of the relation between these conservation
laws and the members of the KdV hierarchy, one could con-
sider the results, in particular in Ref. 6, as almost providing
the explicit form of the KdV hierarchy. However, the eluci-

) Based on a part of a thesis to be submitted by AR to the senate of the
Technion—Israel Institute of Technology, in partial fulfillment of the re-
quirements for the M.Sc. degree.
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dation of the structure of the KdV hierarchy achieved in the
present article is a prerequisite for the consideration of the
general isospectral transformation as presented in the con-
cluding section, i.e., in terms of an arbitrary F(V).

li. PRELIMINARY CONSIDERATIONS

The evolution equation

Vz= ““ZAm+l,x’ (2)
where
Am+ 1L,x = V.Am,x + %Am : Vx - (ﬁ2/4)Am,xxx (3)

specifies an isospectral transformation of the one-dimen-
sional  Schrodinger  equation Hy =Ey,  where
H= —#(d?/dx*) + V. Here x is the dynamical coordi-
nate, ¢ is a parameter such that V= V(x,t), ¥V, =3V /¢,
V., =38V /dx,and A4,,, = JA,, /0x. Here m is a running in-
dex,m =0,1,2,.....

The fact that the transformation is isospectral means
that for all eigenvalues we have JE /Jdt = 0, or equivalently
§< . v*V, v dx =0, where ¢ is any one of the eigenfunc-
tions. That §*  ¢*4,, . ¥ dx =0 was shown in Refs. 1,
2, and 4. It follows immediately that an arbitrary linear com-
bination 3, @,,4,,, ., where {a,, } is a set of constant
coeflicients, will also specify an isospectral transformation.

A, was implicitly presented in Refs. 1 and 2 for
m=0,1,2,3, i.e,

Ay= -1, A4,=-V/2,

Ay= —3V>+ (#/8) V,,,

Ay= — SV + 3 [V V,  +3 VI - #HB3)V,,
resulting in the evolution equations

V.=V, V,=3iVV, — (#/$)V;, ,

V=BV, -3V Vs +2V, V] — #H/3DV,

where V,, =3V /dx'.

To elucidate the explicit form of the general isospectral
transformation we first consider the successive terms that
can be generated using Eq. (3).

Writing
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m—1

A, =3 (=DiT%dY,,, (4)
i=0
we obtain
Ai+ im+ 1.x = V'Ai+ 1,m,x + %Ai+ 1,m Vx + A%Ai,m,xxx -

(5)

The nature of this two-dimensional recurrence relation is
illustrated in Fig. 1. It determines 4, , | ., , 1,,0<i<m — 1,
in terms of the two elements 4,,,, and 4;, or, if
i=m — 1,in terms of 4;,,, only. It is therefore necessary to
specify both 4, and the constants of integration entering
upon evaluationof4;  , ,, ., from4,  ,, ... Weshall set
Aoy = — 1, and all the integration constants will be chosen
to be zero. Although some further flexibility in the final
expression for the general isospectral transformation could
be incorporated by allowing the constants of integration to
be arbitrary functions of ¢, this further flexibility, whose clas-
sical analog was discussed in Ref. 4, will not be explicitly
retained.

The recurrence relation becomes particularly simple for
Aq,,, obtaining the form

AO,m + 1,x = V.AO,m,x + %Ao,m ) Vx ’
which is just the classical limit of the original recurrence
relation, Eq. (3). This recurrence relation, which involves
stepping along the horizontal sequence i = 0 in Fig. 1, was
solved in Ref. 4, where it was shown that

Ao =[Cm—DW2"-mV™. (6)

Having obtained all the terms correspondingtoi =0, it
is now a simple matter to proceed along the horizontal line
corresponding to i = 1 in Fig. 1. The terms along this line
constitute the lowest-order quantal terms. Thus substituting
Eq. (6) in Eq. (5) we obtain

A1 =VA x +i4,,' Vs
+[@2m—DN2"-(m — 1))
X[(m—=1)(m—=2)V""3V,
+3m =DV WV, Vi, + V7™ V5 ]

FIG. 1. The two-dimensional recurrence relation for 4,,,;.
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It follows straightforwardly that-
An,z =1 V(Z) ’

A =5V Vo +14 V%n) ,

A, =8V, + V' V),
and it can be shown by induction that

m—3,172
V V(l)

Vm—2
+—.
(m — 3)!-2!

_ 2m — N ]
(m—2)!

276

(7N

Al,m

2)

This result can be substituted in Eq. (5) to obtain
A2,3 =% V(4) s

A=V Vi +3 VeV +& V0
Ays =B VWV +8 ViV
+BVVG + 8BV Vi
A =BV Vi + @V Vo, +8BV Vi

2541 2 1155 /4
+EE WV, Vi, + 838V

On the basis of these results one can already make cer-
tain observations concerning the form of 4,,, in general.
First, 4, ,, is homogeneous, of degree m — #, with respect to
V (including its derivatives). Furthermore, 4, ,, is a sum of
terms, each one of which contains a product of derivatives of
¥V, the sum of whose orders is 2i. This sum is called the deriv-
ative index in Ref. 6.

Thus the orders of the derivatives in each term of 4, ,,
constitute a partition of 2i. These two statements can be es-
tablished by induction, using Eq. (5). The induction has to
be carried out over the two indices [ and m, which can be
done by imbedding an induction over m within an induction
over i, as follows: checking Eq. (6) to establish that the two
statementsaretrueforall4,,, (i.e.,i = Oandallm) weshall
assume that they are true for / and all m and show that they
are, consequently, true for / + 1 and all m.

The last statement will be proved by induction over m,
with fixed i: From Eq. (5) and the induction hypothesis it
follows that the theorem holds for 4, ,,,. We assume
thatit holdsfor 4, , ,, and show thatitholdsfor 4, , | ,, 41
by noting that each one of the three terms in the rhs of the
recurrence relation, Eq. (5), is of order 2/ + 3 and degree
m — i from which it follows that 4, ,, ., is of order
2(i + 1) anddegree (m + 1) — (/ + 1) = m — i. This com-
pletes the proof.

Denoting by £ the number of summands in a given parti-
tion of 2i, we observe that the ratios between the coefficients
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of terms corresponding to partitions of equal £ are indepen-
dent of m. Thus, for i = 2, £ = 2 the possible partitions of
2i =4 are 3 + 1 and 2 + 2. The ratios of the corresponding
terms are 4/3 inA4,,, A,5 as well as in 4, . The general
validity of this observation will be established later on. It
suggests that the coefficient of each term in 4, ,,, can be writ-
ten as a product of two factors, one of which depends on the
partition but not on m, the other one depending on m, i, and
£ but not on the specific partition.

The observations just made suggest that the general
form of 4, ,, is

_ 2m-—1! [3.V”"3'V(4)

4,
‘ 2180 (m — 3)!

Vm-—4 ) V%Z)
(m — 4)! [W”) Ve +9 2!
+11_____~__V'"—5~V(2, Vi 15..Vm_6'V?n}.
(m —5)1-2! (m — 6)!1-4!
(8)

This relation can be established by induction. One can pro-
ceed and obtain

]
+‘(’:+66)!‘ [%?‘ Vo Vi + 43V Vi Vi + % V%Z)] + (’:—”:77—)' [% » Vi + 5,8‘% Vi V§2)]
+‘(TL/%'%V(2>V?1>+(7V"1___;)!'%V?U]- 9

Further progress along these lines becomes rather cumber-
some. However, before we attempt to undertake some more
general considerations, let us obtain one further simple spe-
cial case, along the line characterized by i = m — 1,inFig. 1.

Along that line the recurrence relation obtains the form

— 1
Am,m +1,x 7 4 Am — 1,m,xxx

or
14

Am,m +1 =3
It follows immediately that
Amﬁl,mz(l/ZZ"’_l)'Vum_z) . (10)
A comparison of this result with Egs. (6)—-(9) suggests that
o @2m—=1
T2+ D

m— 1,m,xx *

iLZm

o ) 2%y
3 el [ 28
Fgr £yyeeedy; j=0 lj!
2i 2§
( L =m—]|, Zj-z}:Zi), (11)
/=0 =4
where C[172%---(2/)*] are numerical coefficients which

depend on the partition of 2/ but will be shown to be indepen-
dent of m. These coeflicients have already been determined,
via Egs. (6)-(9), for i = 0,1,2,3. They are presented, along
with further coefficients, in Table I. ‘
For a given / and a large enough m, the number of terms
inA,,, is equal to the number of partitions of 2/ into sums of
positive integers. Since #; is the number of times that j ap-
pears in the partition, it follows that £ = £7' |/, is the num-
ber of summands in the partition considered. The maximum
number of summands, obtained by writing 2/ =1+ 1
+ -+ 1 (e, i, =2 =0,j>1)is £, = 2i. The power
of Vin a term corresponding to a partition into £ summands
s 2i
fp=m—i— S i=m—i—¢.
j=1
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Therefore, the minimum value of m for which all possible
partitions of 2/ appearin 4;,, ism =i+ £, = 3.

For i = 0 the minimal value of m is zero. However, for
i>0 the minimal value of £ is 1, corresponding to #; =0,
i<j < 2i; iy; = 1. Therefore, the minimal value of m, corre-
sponding to i, = 0,1s/ + 1. Fori + 1<m < 3/ only partitions
into at most m — [ summands are allowed.

Ill. THE GENERAL RECURRENCE RELATION FOR THE
COEFFICIENTS

Having written 4,,, in Eq. (11), we shall now derive
general recurrence relations for the coeflicients
C[12%---(2i)™] which will enable us to show that these
coeflicients are indeed independent of m. The recurrence
relations for the coefficients are obtained by substituting Eq.
(11) in Eq. (5) and comparing coefficients. A typical term
appearing in Eq. (5) after substitution of (11) is

e=TI "%
j=0

p=m—1, 3 ji=2+3, n<2i+3.
=0 i=1

To obtain the coefficient of g in Eq. (5) we note that it
appears in the following ways.

M X
-~

A.FromA, . ...

Here g can only arise upon differentiation of terms of the
form A =gV, /V 1, which, being of degree m — i and
order 2(i + 1), are contained in 4, , | ,, , ;. Such a term is
only present if g contains V', ., (i.e., iy, , >0). Upon dif-
ferentiation it will generate many other terms in addition to
g, but all these other terms are not relevant. The coefficient
of the corresponding contribution to g will be

ai+1.m+l(h)'(ik + 1){k+ 1}
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TABLE 1. The coefficients for i<5.

C[o] = 1 C[8] = 81 C[10] = 243 C[2%37] = 2183517/5
Cl(1,7] = 324 C[1,9] = 1215 C[1%6}] = 101331
C12] = 3 C[2,6] = 891 C[2,8] = 4131 C[1°2,5] = 1223262/5
ci1?) = 3 C[3,5] = 1539 C[3,7] = 9234 C(1°34] = 370332
C[47] = 1863 C[4,6] = 14823 C[132%4] = 2539593/5
cl41 = 9 cliz6] = 1215 CI5*] = 17253 Cl122,32] = 3192777/5
C[1,3] = 18 C[1,2,51 = 12916 Cl138] = 5751 C[1,2°3] = 4386879/5
C[2%] = 27 C(1,34] = 4374 C[1,2,7] = 17658 C[2%] = 1209 411
C[132] = 33 C[2’4] = 6075 C[1,3,6] = 176904/5 C[1,5] = 363285
cl1 = 45 C[2,3%] = 7533 C[14,5] = 248427/5 C[1°2,4] = 754515
C[13,5] = 4131 C[2%6] = 243 081/5 C[1"3%] = 949 887
Cl6] = 27 C[132,4] = 42687/5 C[2,3,5] = 85293 Cl13,2%3] = 6518 718/5
C[1,5] = 81 C[1%,3%] = 53379/5 C[2,4] = 514593/5 C{1%,2*] = 8960139/5
C[24] = 171 C[1,233] = 73548/5 C[324] = 643059/5 C[154] = 1136025
C[3?] = 207 Cl2%] =102 141/5 C[13,7] = 25272 C[1°2,3] = 1964 655
C[1%4] = 225 Cl1*4] = 12393 C[132,6] = 346923/5 C[1%,2°] =13495977/5
Cl[1,2,3] = 387 C[13,2,3] =106 677/5 C[133,5] = 610983/5 Cl1",3] = 2993760
C[2%] = 549 C[1%2°] = 146853/5 C[1%,4%] = 147177 Cl182)] = 4113747
C[133] = 540 C[15,3] = 31590 C[1,225] = 837621/5 Cl1%2] = 6330555
Ci13,2%] = 747 C[142?]  =216999 C[1,2,3,4] =1265949/5 C[1'] = 9823275
C[142] =1071 C[152] = 65205 C[1,3%] = 1588 734/5
C[1°] = 1575 C[1*] = 99225 C[24] = 1742 553/5
The factor i, + 1 is due to the differentiation of ¥ 'and 1. j+1<k</—1

the factor {k + 1}=1—8i,, ,, takes care of the require-
ment i, , , >0. Here &r; | | ,,, . 1 (h) is the coefficient of / in
A; { 1.m +1, which, according to Eq. (11), can be written in
the form
Qiyimyr ()
_ 2m + !
3i+1,(2i+ 3)”,2m+i+2

Clh] (I,I (ij(h)!))_l.

B.FromA, ..V

Here g/ V is obtained (among other terms) upon differ-
entiation of each one of the functions 2’ = (g/V) (V (4, /
Viery), k=0,1,.,n— 1. Since all these functions are
containedin 4; , , ,,, each one of them contributes the quan-
tity

iy im (h I) '(ik +1-— 51(,0 ){k + 1}
to the coefficient of g in Eq. (5).

C.From 1A, .-V

The term in A4, , ; ,, contributing to g willbe 2" =g/
V1, with the coefficient

3 m {1}.

As indicated by the last factor, there is a contribution only if
g contains ¥, , ie, {;>0.

D.From} A, ,, ..x

The general form of terms in 4, ,, which contribute to g
upon triple differentiation is

h" =gV Vi V(l)/V(i+ vVarnVuin)

0 jgk<gi<n — 1.

"

The coefficient of g in the third derivative of £ " is specified

for each one of the following cases.
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6-(; + DG, + DG+ D{j+ 1}
x{k+ 1l +1}-a,,, (") .

2 j41=k<l—1

In this case 2" reduces to gV, Vi / (Vi
X V41, ) and the coefficient of g in the third derivative is

3,4+ D@2y, + DG+ DL+ 2HI + e, (2™ .

3. j=k<I—1
Since h” =g Vi,V / (Vi1 Vausr,) We obtain
3 4+20G+ DG+ DT+ 133 4+ e, (87,

where

Hatl=1-6,,-6,, = {

4. j+1<k=1—1
3G, + D0 + Dy + DU+ IHE+ 2}, (BT

5 j+1<k=I
3G, + DG +2) Gy + DU+ 13U+ 11a,, (™)

6. j+1=k=1—1
Here h" =gV (;,/V; 3, and the coefficient of g is
G+ D66, G0 +30 00 +6,,) +1]
x{j+3}a;,..(h") .
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7. j+1=k=I

3G, + DG + D> {7+ 2 e, (h") .

8. j=k=I—1

3G, + DG +2) i+ IHj+ 2}a, (R7) .

s e[y ) o[BS ] gy o[ e ]] L

9. j=k=I

G+ 3G +2)G + DI+ e, (A" .

Using these results it is a straightforward, though te-
dious, task to equate the coefficients of any term g in the
recurrence relation, Eq. (5).

The resulting equation is

_1 , [g(v)]
2 6(2i+3) Ve,

K=o 6(2i+3) 2 Vik+ 1y V-Vikin
1 [7=5 n=3 a1 ) [ Vin Vo Va ]
- 6, ig 18, ,°ClE8V):

4{/’2’0 K;+21=;+2 AR V(j+1)V(K+1)V(1+1>
n—3n—1 ] ] V%j) Va

+ Z Z 3lj+1(lj+1_1)11+1'c gV ————
j=0I=,+2 (j+l)V(l+1)
n—-3 n—1 V ; V2

+2 > 3l}+1i,+1(i1+1-—1)'C[g(V)'——%‘]
Jj=01=j+2 (j+1)V(l+l>

"L . . Vin
+ ¥ GG — DG =2)C eV ———
j=o

(j+D
n—4 n—1 V..V
+ 30 34,2, + 1)f,+l-c[g(m—%]
Jj=01=j+3 V(j+2) V(1+1)
nodono2 . . Vi Vi
+ 2 E 3 ik Qg +DC V) ———
Jj=0K=j+2 V(j+l)V(K+2)
n—2 V P V i
+ 2 3[j+2(ij+2 - 1)(l}+l +1)-C [g(V)' _%M]
j=0 V(j+2)
+n§3_2 ' C[ (2 Vo ]
L ll' 2 g - 5
j=o0 s V(j+l)V(j+2)
=3, . . . . Vi
+ Z ’j+3(6’j+1’j+2 +3 0+ )+ )-Clg(V) ———| . (12)
j=0 (j+3)
[
In Appendix B we use Eq. (12) to show the m independence g=ViViy, "'Vi",,’_‘ o Vew -
of the coefficients C[ - - - ]. Using this result the left-hand side
of Eq. (12) obtains the form IV. RESULTS

n—1 ; V
S kel (i+§+i)c[——g w0 ]
o 6(2i +3) 2 Vst

(12"

1. 2 g ]
2 6(2i+3) [ Vi I©
the right-hand side remaining the same as in Eq. (12).

The number of distinct terms appearing in the recur-
rence relation is larger than the number of terms in
A; | 41, because upon differentiation of a typical term of
the latter several contributions to the former appear. More
precisely, the number of termsind,; |, ,, ., is the number of
partitions of 2(i 4+ 1), whereas the number of terms in the
recurrence relation is the number of partitions of 2/ + 3.
Thus the set of linear equations obtained upon equating coef-
ficients in the recurrence relation is redundant. It is shown in
Appendix A that one way of obtaining a nonredundant set of
equations consists of considering only those terms in which
the highest derivative appears linearly, i.e.,
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The general expression for 4,,, which we now write in
the form

_ (2m—1)" 2i Vm—i—§
32 4 N2+ ggm (m—i—£&)!

o ) %1 (V5
. z C [11,212___(21')’2:’] H ( (J))

. : Al
. j=1 ’j-

20 2i
( lj=§’ Zj.lj=21):
=1 =

iLm

where {i} = 1 — §,,, involves a set of coefficients which have
been shown in Appendix B to be independent of m. These
coefficients satisfy the recurrence relation, Eq. (12'), which
was used to obtain the coefficients appearing in Table I. The
recurrence relation was further used to derive closed form
expressions for certain types of coefficients, which are pre-
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TABLE II. The coefficients for certain sets of terms.

£=1 [2i]] =3
E=2 [1,2i—1] =3}
[2,2i —2)=3""'(22 + 1)
[32i=3)1=3""(P—#/2+i/2~1)
[42i —4] = (3" '/5)(2i* =3P + 22— 3i+5)
£=3 [132i =2]=3""'(3F—i+ 1)
{1,2,2i = 3] =3~ 1 (2% — 3%/2 + 3i/2 - 2)
[1,3,2i — 4] = (3~ ' /10) (10i * — 172 + 13/ ~ 22i + 28)
[2%2i — 4] = (3"~ 2/5)(20i * — 32 + 282 — 52i + 63)
£=4 [132i —3]=3i(P—+i—1)
[1%,2,2i — 4] = (3'72/5)(30i * — 55{* + 54 — 95i + 99)
£E=5 [192 — 4] =3""1(3i* — 62 + 777 — 12i + 11)
E=2i [1%]) = (2i+ 1) [(2i — DN}

sented in Table II. These expressions provide some clues to
the form of the general expression for an arbitrary coeffi-
cient, but the actual derivation of a closed form general
expression has not been achieved.

V. THE GENERAL FORM OF AN ISOSPECTRAL
TRANSFORMATION

It was pointed out in Sec. II that the general form of an
isospectral transformation is

Vr :ZamAm+1,x ’
m

where{a,,, m = 0,1,...} is an arbitrary set of constants. As a
matter of fact, if the a,, were arbitrary functions of ¢ the
above expression would still be a valid isospectral transfor-
mation.

Let

(13)

F(V)zZ—(Mam'—V—m

P 2" m!
and note that

d*F 2m — D!
F,,V)= = a,,
(k)( ) aVk z om

m

Vm —k
(m — k)! '
To obtain the general expression for an isospectral transfor-
mation characterized by an arbitrary F(¥) we substitute
Egs. (4) and (11) in Eq. (13) and use Eq. (14) to express
the sums over m. The resulting equation is

1y g2i
V= —oy LD
=0 2"-3%-(2i+ N

i=0

(14)

2i

. c[15---2iy~]
5;& il,igy"zi [

(v,
XH — 'F(i+§)(V)
j=1 lj' x

(22 i =¢, 22 i, = 21') .

=1 j=1
Comparison of the classical limit of this expression,
V, = 2F, = 2F, V, with Eq. (1), indicates that f = 2F,, .
In a publication which appeared after the present article
was submitted for publication, Torriani’ presented a conjec-
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ture enabling the combinatorial enumeration of the terms
appearing in the KdV densities as well as the partial deter-
mination of their numerical coefficients. The relation sug-
gested by these conjectures between the results derived in the
present article and the representation theory of the symmet-
ric group seem to deserve further attention.
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APPENDIX A: NONREDUNDANT SET OF EQUATIONS
FOR THE COEFFICIENTS

We shall now present a nonredundant set of equations
for the coefficients appearingin 4, , ; ,,, . The number of coef-
ficients is equal to p,., ,, the number of partitions of
2(i 4+ 1), and this will also be the number of equations to be
presented. These equations will be ordered in such a way that
each one of them contains one new coefficient, in addition to
coefficients appearing in preceding equations.

The set of equations described will be obtained by equat-
ing the coefficient of a particular set of terms in Eq. (5), and
in a particular order which we now specify.

Since each term g appearing in Eq. (5) is specified by a
partition of 27 4 3, let us arrange these partitions in “increas-
ing order” as in the following example, corresponding to
2i+3=5:

&=1 &)
§=2 (1) (4
(2) (3)

§=3 (1) (1) (3)
(1) (2) (2)

§=4 (1) () (1) (2)

§=5 (1) (1) (1) (1) (1)
This ordering can either be specified as increasing in £ and
arranged dictionarywise for each &, or, if the partition is read
as a number (in the basis 2/ + 4), the ordering is according
to increasing numerical value (5 <14 <23 <113 < - -- etc.).
The same ordering was used in Ref. 6.

Let us first consider the relation obtained by equating
the coefficients of

g=V" TV, "'ng: 1 Vw (AD)
in Eq. (5). One of the terms in 4, |, ,, , , Which contribute

to g upon differentiation is

i1+ 1

filn—1) = VmViigV?l)"'V(n—l) =gV, v/Vy -

The other terms obtained by differentiation of f,(n — 1) are
of the form

g= Vm_i;g"'Vi(JjV)lV%jt‘l) "'Vi"n_fl;r)l .
Since g precedes all possible g in the ordering specified
above, it is obvious that £, (n — 1) could not have contribut-
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ed to any one of the linear equations corresponding to the
coefficients of terms preceding g in the above ordering. Oth-
ertermsind,_ ,,, , contributing to g upon differentiation,
such as
LR =V i  VET VLV,

also generate additional terms which precede g, which
means that the coefficient of £, (k) has already appeared in a
preceding equation. Since Eq. (5) is a two-dimensional re-
currence relation we have to assume that when we attempt to
determined; , , ,, . ; allthetermsintherhs,ie., 4, ,, and
A;,,, are already available. Hence, the only new coefficient
appearing is C[g-V(,,_1,/V,, ]. For a given 1<n<2i + 3
the number of different g’s of the form (A1) is the number of
partitions of 2i + 3 — n into integers not larger than n — 1,
P,_,(2i 4+ 3 — n). In view of the identity

2i+3

Z P, ,(2i+3—n)

n=2
2i+2

= Z P (2i4+2—-n*)=p(2i+2)

n*=1
it is obvious that the number of equations generated by all g
of the form (A1) is equal to the number of coefficients in
A; | | m4 1. Since each one of these equations, if ordered as
specified above, contains one new coefficient, together they

determine all p,; | ,, coefficients in 4, ,,,, ;-

APPENDIX B: m INDEPENDENCE OF THE
COEFFICIENTS

To demonstrate the fact that the coefficients are not m
dependent, we start from the recurrence relation, Eq. (12),
which we write in the form

"2‘ iy m [C[ &V ]—C[ gV ”
= 6(2i + 3) V(k+1) (V'V(k+1))
+"i‘ I 41 [__I_C[g'V(k) }
o 6(2i+3) [ 2 V(k+l)
. &V
NI
(V'VPasn)

_1__4 c[g}:--. (B1)
2 6(2i+3) |V,

All the terms not explicitly written down are neither explicit-
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ly m dependent nor containing coefficients corresponding to
partitions of 2(/ + 1).

It was shown in Appendix A that each equation intro-
duces one new coefficient. Since for / = 0,1 the coefficients
were explicitly shown to be m independent, we can invoke
the following inductive argument to establish the 7 indepen-
dence of all coefficients. Assuming that all coefficients pre-
ceding the last one are m independent we have in particular

ClgVu/Viksn ]
=Clg Vi / V' Vi)
Thus, the only remaining m dependence is in
[(,m/6(2I+3)] [C[8 Vi1 Vi ]
—C[gVu-1,/VVi))]]
+[0,76Q2i+3)] [LC[gVin_ 1)/ Vim ]
+U+8C[g Vi 1y/(V V)] ="=u. (B2)

The lowest value of m for which C{gV, _,/V ., ] can ap-
pear is m =i+ §. For this value of m ClgV,, .,/
(V- ¥, )] cannot appear so that Eq. (B2) results in

Clg8Vi_ v,/ Vi | =062 4+3)/iy (i+&+1).
Assuming that up to some m* C[V"™ gV, _1,/Vin ]
=C[gV,—1,/Vn ] we show that the same applies to
ClV™+'g V., 1,/Vu]. Note that the latter corre-
sponds to m =i + & + m* + 1, so that from (B2)
C[Vm*+l'g.V(n71)/V(n)]

= (u[6Q2i+3)/i,]+ (m*+ 1)

C[V™ gV ty/ Vi 1)/ (m+1)
=p62+3)/i,(i+E+D=C[gV,_0,/Vim]-
This concludes the proof of the 7 independence of the coeffi-
cients.

k<n—1.
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The Dirac equation in a spherically symmetric screened Coulomb potential is transformed to a
modified Schrédinger equation of the form d *u/dr* + k *(r)u = 0. This transformation is
induced by expressing the Dirac function as a linear combination of the function u and its
derivative du/dr. Various properties of the transformation and of the resulting equations are
studied. The close similarity between the modified Schrodinger equation and the Schrédinger
equation suggests that methods applied to the Schrodinger equation to derive nonrelativistic
relations can be applied to the modified Schrédinger equation to derive the analogous
relativistic relations. As an example, this approach is applied to the single channel quantum
defect theory to give a new derivation of its relativistic form.

I. INTRODUCTION

Our objective in this paper is to develop a Schrédinger-
equation-like formalism for the Dirac equation in a screened
Coulomb potential permitting relativistic calculations utiliz-
ing procedures previously developed for the nonrelativistic
case. In various atomic processes, such as photoionization,
Compton scattering, or bremsstrahlung in an ionic field, the
potential seen by the free electron at large distances from the
ion is a point Coulomb potential, corresponding to the ionic
charge Z,,, . Closer to the ion, when the free electron is pene-
trating the charge distribution of the bound electrons, bound
electron screening of the nuclear charge is no longer com-
plete and the potential is no longer of the point Coulomb
type; in addition exchange and correlation effects also affect
the free electron. Following the terminology of the R-matrix
method’ we thus divide the space around the ion into two
regions: the external region, where the potential is point
Coulomb, and the internal, non-Coulomb region. (Of course
at the center of the internal region is another Coulombic
region, but now characterized by the nuclear charge Z rather
than the ionic charge Z,,, .) Several theoretical models have
been applied in order to calculate a local atomic potential in
the internal region. The most commonly used are the Har-
tree-Fock-Slater? potential in the nonrelativistic case and
the Dirac-Fock—Slater® potential in the relativistic case.
Other methods (local-density approximation,” random
phase approximation,®> and Fock approximation®), which
may go beyond a local potential description for the interior,
are used as well.

Except for very special cases, there is no analytic solu-
tion to the Dirac equation for a screened central potential in
the internal region, and numerical methods must be applied.
On the other hand, in the external region (referred to hereaf-
ter also as the tail region) the solutions are well known.” The
complete solution to the Dirac equation, describing both in-
ternal and external regions, may be obtained by matching
numerically integrated functions in the internal region to an
appropriate linear combination of the regular and irregular
solutions in the point Coulomb potential. With this match-
ing, carried out at some point in the tail region, one is able to
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normalize the continuum wave function, and to calculate the
phase shift caused by the presence of the potential in the
interior region.

The analytic solution of the Dirac equation in the point
Coulomb potential may be expressed in terms of confluent
hypergeometric functions. These functions appear also in
the Coulomb functions which provide the solution of the
Schrodinger equation in the point Coulomb potential, and it
turns out that the Dirac functions in the point Coulomb po-
tential are given as linear combinations of such functions and
their derivatives, albeit for modified arguments. Utilizing
this linear combination of solutions, the Dirac equation is
transformed into a modified Schrodinger equation® in the
Coulomb potential, which we may call a modified Coulomb
equation.

The question now arises as to whether there exists a
similar transformation for the Dirac equation in a screened
Coulomb potential, which would result in 2 modified Schro-
dinger equation of the form d 2y/dr* + k2(r)u = 0, where
the effective potential k () is a function to be determined. It
turns out that there is such a transformation. The Dirac
functions can be expressed as a linear combination of the
function # and its derivative, where « is a solution of the
modified Schrodinger equation.

The close similarity between the modified Schrodinger
equation and the Schrodinger equation suggests that various
relativistic quantities can be obtained with the same methods
used to obtain the corresponding nonrelativistic quantities.
This approach is applied here to the quantum defect theory,
and application of the formalism to a relativistic WKB ap-
proximation is in progress.” We expect that other features
and consequences of the Dirac equation can be obtained by
applying nonrelativistic methods to the modified Schro-
dinger equation.

In Sec. II we will begin by reviewing the Dirac equation
for the point Coulomb potential and how it may be written in
terms of a modified Schrodinger equation (modified Cou-
lomb equation). In Sec. III we demonstrate that the Dirac
equation in a screened Coulomb potential may also be writ-
ten in terms of a modified Schrodinger equation. In Sec. IV,
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as an application of this formalism, we rederive the relativis-
tic quantum defect theory relations.

{l. THE DIRAC EQUATION FOR THE POINT COULOMB
POTENTIAL

A. The Dirac equation

The Dirac equation for an electron moving in a spheri-
cally symmetric potential V(r) is

Hy = (ca-p + pmc* + V)¢ = Ep. (2.1)
We choose the usual representation in which
_ (0 o) _ (I 0 )
a_(o of F=\o —1/) (2.2)

1 is the 2 X2 unit matrix and o are the usual 2 X2 Pauli
matrices. Here E = mc? + T is the total energy of the elec-
tron, T being the energy relative to the rest mass.

The eigenfunction # is a four-rank spinor which can be
written as

1{ 8 Lm
Yim = (tf _K,,,)

where « is a quantum number which combines angular mo-
mentum j and parity /,

(2.3)

k=TF(+Y) asj=I+]} (2.4)
The spherical spin orbit spinor of rank 2 is given by
Q= 3 (l_l_m—ss[im)Y,,m_sXs; (2.5)
s= 4+ 1/2 2

(I}m —ss|jm) are the Clebsch-Gordan coefficients,
Y, _, are the spherical harmonics, and the spinors X * are
defined by

Xl/zz(l) X_l/zz(o),
0/’ 1

With this form for the eigenfunction, the Dirac equation
reduces to

(2.6)

dg K 1+e€

a8 _ K —U)\f 2.7
I rg+( i )f (2.7a)
Zf S+ ( €+ U)g, (2.7b)

where A, =#/mc is the Compton wavelength, e = E/
mc2=1+T/mc? and U=V /#c.

B. The modified Coulomb equation

When the potential is given by ¥ = — Ze?/r, the Dirac
equation (2.7) takes the form

dg « l1+e a
- S Bt 'Y 2.8
o rg+( i + r)f (2.8a)
df K —€ a

+ ——lg, 2.8b
ar f ( A. r)g ( )

where a = [{Ze?)/(#c)] = Za, a being the fine structure
constant.
The solutions of (2.8) are well known’; they can be writ-
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ten in terms of solutions of the Schrédinger equation in the
same potential, but with modified parameters. Here we will
deduce a form for this connection by only considering
boundary conditions, to prepare for a generalization of the
connection to other potentials. When the energy 7 is positive
(€> 1), the regular solution of (2.8) has the following prop-
erties.
(1) As r—»0 we have

g=Nr, f=[(«+y)/alg (2.9)

Here ¥ = («* — a*)"/? and N is a constant which depends on
the normalization of the continuum solution of the Dirac
equation at large distances.

(ii) As r— o we have

g~Asin(pr — i + 5, + nn|2pr|),

(2.10)
S~AQ cos(pr — }m + 8. + n1n|2pr|),
where
.= —arg(y+im) + U+ 1—9)(7/2) + &, (2.11a)
and
p=(1/A)(€ - 1) p=ae/(e—1)"? (2.11b)

Q=(e—1)/(e+1))"? tané=aQ/(k—y).

The constant 4 in (2.10), like N in (2.9), is determined by
the normalization of the continuum wave functions. When
the normalization is on the energy scale, i.e.,

f drlg(rE)g(rE") +f(hE)(rE")] = 8(E — E"),
0

(2.12)
we have
= [(mc*7A . Q)"*]7, (2.13a)
N=A-[\T(y+im)|e™*/TQ2y+1)]
X (2pA )" (ycos & —msin&). (2.13b)

The boundary conditions (2.9) and (2.10) for the large
component function g are similar to the boundary conditions
of the regular Coulomb function «,, which provide the con-
tinuum solution to the Schridinger equation in the point
Coulomb potential, but corresponding to a noninteger angu-
lar momentum parameter ¥ — 1. Namely,

u, < r,
e (2.14)
u. « sin(pr — M + o, + 7 In(|2pr|),
where
o.= —arg(y+ip) + U+ 1—-y)(7/2)=65. —§.
(2.15)

The combination v, = (1/p)(u. — (y/r)u.) behaves like ¥
near the origin and like

cos(pr — i+ o, + 1 1n|2pr|)

as 7— co. Thus the boundary conditions suggest the follow-
ing form for the functions g and f:

g=cosfu+siné& (1/p)-(u' — (y/r)u), (2.16a)
f=QI[—sin&u—+cos& (1/p)-(u' — (y/r)u)]. (2.16b)
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Indeed, on substituting (2.16) in the Dirac equations we
find that both equations, (2.8a) and (2.8b), reduce to the
same modified Schrodinger equation in the point Coulomb
potential,

2
d’u +<p2+2_a_€___7’(7—1)>u=0’

ar A.r ? 217
which we shall call the modified Coulomb equation. The co-
efficients of the first derivative du/dr in (2.17) vanish,

—(k—p)tan§ +aQ =0,

—(k+y)/(tan &) +a/Q =0,
since ¥ = (k* —a?)"/? and tan £ = aQ /(x — ¥), according
to our previous definitions.

However, if we tried to solve (2.18) to determine ¥ and
&, we would find a second solution which also leads to
the modified Coulomb equation (2.17), namely

= — (k* — a®)"2 The regular solution of (2.17) in this
case behaves near the origin like 7' =7 and the phase o,
would be obtained by replacing ¥ with 1 — ¥ in Eq. (2.15).
Either solution leads to the same solution of the Dirac equa-
tion.

It follows then that ¥ and £, which we have related ini-
tially to the properties of the Dirac functions, may alternate-
ly be considered as free parameters, to be determined by the
requirements that (a) g and fgiven by (2.16) solve the Dirac
equation (2.8) and (b) u is a solution of the modified Cou-
lomb equation (2.17).

The arguments which led us to the form (2.16) for the
Dirac wave functions were based on the boundary condition
of the regular continuum functions. However, since we have
shown that the Dirac equation (2.8) is equivalent to the
modified Coulomb equation (2.17) when g and f have the
form (2.16), it follows that this relation is not restricted to
the regular continuum case. Thus, when u is an irregular
solution of the modified Coulomb equation, we get from
(2.16) an irregular solution of the Dirac equation. The rela-
tion also holds for the negative energy (€ < 1) case. In this
situation the momentum p and the functions 7, Q, and sin £
become purely imaginary. Equations (2.16) remain, how-
ever, real, and so does the modified Coulomb equation
(2.17).

(2.18)

C. The nonrelativistic limit

The choice of the appropriate sign of y in Eq. (2.16) will
now be made by considering the behavior of the modified
Coulomb equation (2.17) in the nonrelativistic limit. This
limit is obtained by letting the speed of light tend to infinity.
Thus we get

P-\2mT/h, a/A,—Z_,.e/h? |y|-lkl. (2.19)
The modified Coulomb equation reduces to the Schrodinger
equation for the point Coulomb potential,
d?u (ZmT 2m Znac€®  L(L+1)

T, 2
where

)u =0, (2.20)
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L [|x| ~1, >0,
|« 7 <0.
We require that in the nonrelativistic limit, the solution of
(2.20) coincides (up to a sign) with the large component
function g. Therefore L(L+1)=«(x+1) and
sgn(y) = —sgn(«x).'°
With this choice of the sign ¥ we get in the nonrelativis-
tic limit

(2.21)

1
g =sgn(x)u, f=——ﬁ—r-Ki (”g).
c 2m dr

(Note that other conventions are often used; for example in
Rose’ the sgn « factor is omitted. )

(2.22)

D. Free particle case

The Dirac equation for a free particle in spherical co-
ordinates is given by Eq. (2.8) with @ = 0. The expressions
we have derived are valid for this case, for which we have

Y= —K tan £ =0, (2.23)

and the modified Coulomb equation reduces to the Bessel
equation

7=0,

d?u ( ,  klc+ 1))
+ ——Ju=0. 2.24
a2 T\ E (224
The solution of (2.24), regular at the origin, is
u = Arj, (pr), (2.25)

where 4 is a constant of normalization. The corresponding
Dirac functions are obtained from Eq. (2.16),

g = u=Arj,(pr),

f=(Q/p)u + (/rYu) = (x/|x|)AQr; (pr),
where [ =1— «/|«|. The solution of the Dirac equation
whichis irregular at the origin is obtained by replacing in Eq.

(2.26) the Bessel functions j, and /; with the Neumann func-
tions n; and n;, respectively.

(2.26)

Ill. SCREENED COULOMB POTENTIAL AND THE
MODIFIED SCHRODINGER EQUATION

We consider now the case of an electron in a screened
Coulomb potential. We assume that the potential is of the
form

U(ry = — (ay/r)s(r),

wherea, =aZ .
tion such that

1, r=0,
S, T2l

(3.1)

and s(r) is a smooth and monotomic func-

s(r) = [ (3.2)

The tail radius 7, is the position at which screening has its full
effect. Beyond this point the potential is point Coulomb
(s, >0) or it vanishes (s, = 0),

Uuwr)y= —a,/r

where a, = ay's,.

(3.3)

r>r,,

A. The modified Schrédinger equation

We look for a solution of the Dirac equation of the form
(2.16) in the screened potential, with u again the solution of
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a Schrodinger-like equation. Since the effective charge seen
by the electron is now position dependent, we now must al-
low £ and ¥ to be also position dependent. Thus we now have
three functions u, 7, £; we shall use our freedom in the choice
of yand £ to obtain a convenient result for «. (Other choices
might also be useful.)

When we substitute Egs. (2.16) in the Dirac equation,
we find that the function ¥ must satisfy two (second-order)
differential equations, resulting from the two equations
(2.7a) and (2.7b). It turns out that these two equations for u
are the same if we require that the coefficients of the first
derivative du/dr vanish. Thus we get two equations connect-
ing the “rotation angle” £ and the “angular momentum pa-
rameter” y with the screening function s(r)

, dE

3.4
dr (3.42)

= — [k —y(r))tan £(r) + a,s(r)Q,

das _ _ k+y(r) | as(r)
dr tan £(r) o
When these equations are satisfied, « is a solution of the
equation

du (p2 1+ 20y - XD =11 )u o,

r

(3.4b)

ar A.r r
(3.5)
where
w(r) = 4 [ -4y
2a4€ dr
+p(5+—7/(r—)—+(x—y(r))tan§(r))]. (3.6)
tan £(r)

Equation (3.5) will be referred to as the modified Schro-
dinger equation. It should be emphasized that Egs. (3.4)
are energy dependent through the parameter
Q@ =+/(€ —1)/(e + 1). Therefore, both tan §(r) and y(r)
are energy dependent and so is the effective screening func-
tion w(r). However, as we will show below, we can obtain
both £ and y by solving for one energy-independent function.
Before solving the modified Schrédinger equation (3.5)
we have to solve Egs. (3.4), which are the generalization of
Egs. (2.18) for the case of a screened Coulomb potential. We
eliminate y(r) between (3.4a) and (3.4b) and get

rfhda—n§ = E"—gtanzé’—— 2k tan £ + a,50, (3.7a)

r

y={w(tan? & — 1) +a,s(1 — Q%) (tan £ /QO)}
X{tan? & + 1}~. (3.7b)

There are two “natural” initial values for the solution of
Egs. (3.7), which correspond to the values of £ and ¥ in a
point Coulomb potential of an appropriate nuclear charge,
which depends on the point 7,;, at which the integration of
Eq. (3.7a) is started. Namely,

Yo = — sgn(k)\/k*> —aj,

tan &, = a,Q / (kK — 7,),

Foie =0, (3.82)

and
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v, = —sgn(x)Jk* — a2,

tan§, = a,Q/(K_ 7/1)7
We will choose that initial value for which the solution of
Egs. (3.7) is smooth and well behaved, as will be discussed in
the next section.

=r,. (3.8b)

init

B. The subsidiary equation

We transform now Eq. (3.7a) to an energy-independent
form. We define the subsidiary function

f(ry = [tan &(r)]/Q, (3.9)
and we get
r%‘9—=00s92—2kt9+a09. (3.10)
r

Equation (3.10), which will be referred to as the subsidiary
equation, is energy independent, and so are the natural Cou-
lombic initial values which correspond to Egs. (3.8)

Oy =ao/ (K —¥0)s Fie =0, (3.11a)

91 ::ax/(K— 7/1); Finitc = 14+ (311b)

It follows, then, that when one of these initial values is cho-
sen, B(r) is energy independent everywhere. This property
of 8(r) makes the numerical solution of the modified Schro-
dinger equation (3.5) more tractable than would have ap-
peared from Egs. (3.4).

The question now arises as to whether there is a solution
&(r) which varies smoothly between these two initial values
as 7 moves from the origin to the tail region or vice versa.
Such a solution, if it exists, has a Coulombic feature in the
two regions where the potential is point Coulombic. It is
usually impossible for a solution of a first-order differential
equation to satisfy two boundary conditions. However, the
solution 8(r) of the subsidiary equation (3.10) has the prop-
erty that its limiting values as r—0 and - oo are indepen-
dent of the initial values (see Secs. I and 2 in the Appendix).
In particular we have

lim 8(r) =6, for k<0, ry, >0,
r—0
lim 8(r) =86,, for k>0, r <.
Therefore, when « <0 we start the integration at r,,, =7,

with the initial value 8, and integrate inward. The solution
6(r) is a monotonically increasing function (see Appendix
C) satisfying the two boundary values (3.11). When x>0
we start the integration at r,;, = 0 with the initial value 8,
and integrate outward. The solution &(r) in this case is a
monotonically decreasing function which approaches 8, as r
tends to infinity (see Appendix D). At r = r,, however, we
have (for «>0) 6(r,) >0, and the boundary condition at
this point is not satisfied. As far as the solution of the Dirac
equation is concerned, this poses no special difficulty, as we
shall see later.
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C. Some properties of the modified Schrédinger
equation and its solution

With the function () given, we calculate tan £(r) and
y(r) by (3.9) and (3.7b),

tan £(r) = @-6(r),
y(r) ={k[Q?%0%(r) — 1] +axs(r)(1 — 02O6(r)}
x{Q26%(r) + 1371, (3.12)

Then we integrate the modified Schrédinger equation (3.5)
to obtain u, and using Eq. (2.16) we obtain the solution g
and f to the Dirac equation. Let us look at some properties of
Eq. (3.5) and of its solution .

(i) Near the origin (r—0). Since 8(0) = 6§, we get from
(3.12) and (3.10) that ¥(0) =y, and lim,_, r(dy/dr)
= 0. Therefore the dominant term of the modified Schro-
dinger equation near the origin is the centrifugal potential
¥o(¥o — 1)/7%. This assures 7"°(7' ~7°) behavior of u near the
origin for the regular (irregular) solution for « < 0, or for the
irregular (regular) solution when «> 0. This, in turn, as-

sures 77 (r~ "'y behavior for the regular (irregular) solu-
tion (2.14) of the Dirac equation.

(ii) The tail region (r>r,). When k<0 we have
O(r>r,) =0, and by (3.6) and (3.12) we get in this region

v(r)=v, tanf(r) =tang, (r>r,).
(3.13)

Thus the modified Schrédinger equation (3.5) reduces to
the modified Coulomb equation (2.17) for charge
Z=Z,,"s, (ionic potential, s, >0) or to the Bessel equa-
tion (2.24) (neutral atom potential, s, = 0).

When « > 0 the boundary value (3.8b) is not satisfied
and the modified Schrodinger equation (3.5) does not re-
duce to either Eq. (2.17) or to Eq. (2.24). However, since
lim,_  6(r) =6, £(r) and y(7) approach the Coulombic
values £, and ¥, as r— o. The asymptotic behavior of the
solution u(r) of Eq. (3.5) is the same as the asymptotic
behavior of a particular solution #, of the modified Coulomb
equation (2.17) with y =y, and a = a,, as we will now
show.

The solution (g, /) of the Dirac equation in the tail re-
gion can be obtained in two ways: (i) by solving the modified
Schrédinger equation (3.5) and substituting its solution in
Eqs. (2.16); and (ii) by solving the modified Coulomb equa-
tion (2.17) with ¥ = ¥, and & = §,, and substituting its solu-
tionin Egs. (2.16). We denote by #,, that particular solution
of (2.17) for which the two solutions of the Dirac equation
coincide at r = r, (and therefore for r>r,),

w(r) =s,

g, (ry=cos&, -u,(r)+sing, v, (r),

(3.14)
S (ry =01 —sin&t-ut(r) + cos §t-vt(r)],
where v, = (1/p) [u; (r) — (v./N)u, (1 ].
By equating the two solutions we get
u(r) =cos(§, — &)u,(r) +sin(§, — &) v, (r), (3.15)

v(r) = —sin(§, — &u,(r) + cos(§, — &) v, (r),

where v(r) =(1/p)[v'(r) — (y(X)/Au(r)] and £
=arctan[Q-8(r)]. Since £(r)—,__&, we see that the
asymptotic behavior of u(r) and its derivative u’(r) is the
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same as the asymptotic behavior of the Coulomb function
u,(r) and its derivative u, (r), respectively.

(iii) The nonrelativistic limit. The boundary values 6,
and ¢, [Eq. (3.11)] are given in this limit by

Oy~ (1/c) (’Z,,./2hK), 6,=84s,.
Therefore from Eq. (3.10) we find that to the lowest order in
1/¢, O(r) is given by 8(r) = (1/¢)O(r), where ©(r) does
not depend on ¢. On expanding Eqs. (3.6) and (3.12) in 1/¢
we get

V(P = — Kk + (1) (€ Zyo /H) 5(r)-O(r),

tan £(r) = (/¢ (T 72Zm)O(r), (3.16)

w(r) =s(r),
and the modified Schrédinger equation reduces to the Schro-
dinger equation for a screened Coulomb potential,
2 2me*Z
d’u (2mT+ meZoe s(ry I+ 1))u _o,
dr # # r r?

(3.17)
and again, g and fare given by (2.22).

IV. APPLICATION: DERIVATION OF RELATIVISTIC
QUANTUM DEFECT THEORY

Here we illustrate the application of these ideas, using as
our example a rederivation of single channel relativistic
quantum defect theory'"!? with the methods of the nonrela-
tivistic derivation. Applying a nonrelativistic derivation
based on the modified Schrodinger equation (3.5), we ob-
tain the corresponding relativistic theory from Egs. (2.16).

It was shown in Sec. III that the asymptotic behavior of
the solution u of Eq. {3.5) is given by the function u,, which
is a solution of the modified Coulomb equation

d?u ,  2ae  y(y-— 1))
—+ — 4+ u =0, (4.1)
ar (p tost TP
where
a=aZ. s, (4.2a)
and
s k<0,
Y= [" (4.2b)
1—v, &>0.

We consider the case of an ionic potential (a>0) and we
apply Seaton’s quantum defect theory'® to the modified
Schrodinger equation. We follow the QDT method as close-
ly as possible, bearing in mind that the angular momentum
parameter is not an integer in our case.

A. Solutions of the modified Coulomb equation

We first change the variable rin (4.1) tox = aer/A_ and
we obtain the modified Coulomb equation in its dimension-
less form
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d’u ( 1 2 y(y—l))
=T )y =0, 43
dx2+ 02+x x? “ (43
where
o [177 = zae?/\le2 —1, e>1, (4.4)
v=ae/J1—€, €<l

We consider the following solutions to Eq. (4.3) (Ref. 14):
»ioyx) =[(2x)"/TQ2y)] e ¥°M(y — o, 2y;2x/0),

Y2(ovsx) = yy(o, 1 —7; x), (4.5)
where M(a,3;Z) is the confluent hypergeometric function
as defined in Ref. 15. It was shown by Seaton'? that these
functions are analytic functions of 1/0? and therefore they
are analytic functions of the energy for €>¢,> 0. Moreover,

since ¥ is not an integer or half-integer, these functions are
algebraically independent.

B. Asymptotic behavior

From the asymptotic behavior of the confluent hyper-
geometric function'® we get the following expression for y,:

) Ay
X o0 I'(y—0) \ o

+ e—x/a _(ﬁ)ae—iﬂ(7~a)]'
I'ly+o0) \o

(i) Below threshold (e < 1). In this case o = v and the
function grows exponentially as x — « . The function y, can
represent a bound state only when the exponentially growing
part of the function vanishes. This is the case wheny — o'isa
nonpositive integer. The conditions for the energy levels are
therefore

v(e,,) =a€,, /1 — 62,,',( =y—|k|+n

(n = |x|,|«] + L]x| +2,...). 4.7

This relation is equivalent to the expression for the energy
levels of hydrogenlike atoms in the Dirac theory.

(ii) Above threshold (e>1). In this case o = i7, the
function remains bounded as x — «, and we have

(4.6)

v~ [2n7e=™7/|T(y + in)|]sin w, (4.8)

where
o=x/1+n1In2x/m) + (7/2)(1 —y) —arg L' (y + in).
(4.9)

The asymptotic behavior of y, (o, 7; x) is obtained from
Eq. (4.6) by replacing ¥ with 1 — 7,

e (2)”
Yo ~ 0O - —\—
X 0 rl—-y—o)\ o

—x/c o
g (_"i) e—"ﬂl—Y*a)]. (4.10)
'l—y+o)\ o

(i) Below threshold (e <1). Here this function also

grows exponentially as x — « . Since the function is irregular

at the origin, bound states of the point Coulomb potential are

not given by the function y, for hydrogenlike atoms. How-

ever, in the case of a screened potential with a Coulomb tail,

bound states are represented in the exterior region by the
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linear combination of y, and y, which decays exponentially
as x — . Therefore we have to look for the linear combina-
tion of y, and y, in which the exponentially growing part
vanishes.

Using the relation I'(Z)T' (1 — Z) = #/sin #Z, we find
that the exponentially growing part of y, is given by
K sin 7w (y — v), where

K= (1/m)v' T (1l —y +v)(2x/v) " (4.11)
To describe bound states (for the screened case) in a conven-
ient form, we look for a linear combination of y, and y, in
which the exponentially growing part is given by
— K cos m(y — v). The coefficients of the linear combina-
tion are given by

K, = —cot 27y,

K,= —v" T —y+v)/T(y+v)](sin2my)~},
(4.12)

and we get

Yo=Ky +K,y,= —Kcosm(y—v)
— v [e /T (y +v)]1(2x/v)*[cot 2mye "7 =¥
(4.13)

The coefficient X, in Eq. (4.12) can be analytically contin-
ued to energies above threshold'’

+ (sin 27ry) "le I r =],

_01,,*11"(1—7/+0)_ 1

K,(e>1) =

I'(y+0) sin 27y
—_ __7721’—1 F(I_Y'?'h?) . 1 . (4.14)
I'(y +in) sin 27y

Therefore the function y, defined in Eq. (4.13) is an analytic
function of the energy near the threshold.
(i) Above threshold (e> 1). Here we have

Y2 ~ [29' =7 ™/|D(1 —y + i) |Isin(@),  (4.15)

where

& =x/1+nIn2x/n) +7y/2 —arg (1 —y +i7n).
(4.16)

In the case of a screened potential, we characterize con-
tinuum wave functions by phase shifts. It is thus more con-
venient to have two independent solutions to the modified
Coulomb equation (4.3); the regular solution behaves as-
ymptotically like sin(w) and the irregular solution like
cos(w). We define therefore

L, = —cot(d — w),

L=gr—t| A=yt 1 (4.17)
'y +in) sin(@ — @)
sin 27y

2 sin(@ — w) ’
and we get

Jo=Ly+ Ly, ~ [297e=""?/|T(y + in)|Icos(w).
(4.18)
At threshold we have
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K, (e=1)=L,(e=1) = — cot 2ny,
(4.19)

Kye=1)=L,(e=1) = ~ (sin27y) ",

C. Quantum defect and phase shift of the solution of the
modified Schrédinger equation

Let u(r) be a solution of Eq. (3.5), regular at the origin.
Let u,(r) be a solution of Eq. (4.1) such that in the tail
region (r>r,); for k <O we have u, (r) = u(r), and forx >0
Egs. (3.15) are satisfied. We will use the basis functions
defined above and we change therefore the variable r to
x = aer/A,,

y(x) =u(r), y,(x)=u,(r). (4.20)
(1) Below threshold (€ < 1). We write y, (x) as
Y, (x) =clcos mpe-y,(x) + sin muyo(x)), (4.21)

where ¢ is a constant and u is an analytic function of the
energy.'®

For the function y(x) to remain bounded, so that corre-
sponding Dirac functions g and frepresent a bound state, the
exponentially growing part of y, (x) must vanish. This con-
dition is satisfied when sin 7 (y —v — ) =0, or

(4.22)

from which the eigenvalue €, ,is obtained. We write Eq.
(4.22)asv =y — |k | + (n — p) and compare it with (4.7).
It follows that 1 (€, , ) is the quantum defect caused by the
non-Coulomb part of the modified Schrédinger equation
(3.5).

(ii) Above threshold (e>1). We write y, (x) as

¥ —v(e) — n(€) = |k| — n = integer,

¥, (x) =c(cos §-y,(x) + sin 5'}0(X))

~ c[2n%e=™"%/|T(y + in)|]sin(w + 8).
) (4.23)

Thus, 6(¢€) is the phase shift caused by the non-Coulomb
part of Eq. (3.5). We may also express y, (x) in the form of
Eq. (4.21) for energies above threshold. Comparing coeffi-
cients of y, and p, we get

cot 6(e) = cot(® — @) — [ (sin 27y)/sin(d — w) ]

X (cot mu(€) — cot 27y). (4.24)
Near threshold, for 7> 1, we have
cot 8(€) = (1 — cos 2mye ~*"")cot mu (€)
— sin 27ye ~ ¥, (4.25)
and at threshold
cotd(e=1) =cotmu(e=1). (4.26)

Equations (4.25) and (4.26) are the quantum defect rela-
tions of the modified Schrédinger equation. As we will see
below, i (€) and 5(¢€) are also the quantum defect and phase
shift of the Dirac functions, and therefore Egs. (4.24)-—
(4.26) are the relativistic quantum defect relations. They are
identical with the relations obtained by Johnson and
Cheng."
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D. Quantum defect and phase shift of the Dirac
functions

We substitute now an unnormalized regular solution
u(r) of the modified Schrodinger equation (3.5) in the ex-
pressions (2.16) and we get an unnormalized regular solu-
tion of the Dirac equation,

@ - ( —cQossign §)u * }}“ (QSicI;f g)(“' -L u), (427)

where £ and ¥ are the solution of Egs. (3.10) and (3.12).

In the tail region (>#,) the Dirac functions g and f are
the same as the functions defined in Eq. (3.14) in terms of
the Coulomb function u, (7). The function %, (#) can be ex-
pressed as a linear combination of the basis functions «, (r)
and u,(r),

u(r) =y,(x), uy(r) =yo(x), (4.28)

and therefore g and fare linear combinations, with the same
coefficients, of the two solutions (g,,f) and (g,,/,,) obtained
by substituting u, and %, in Egs. (2.16), respectively.

(i) Below threshold (€ < 1). From Eq. (4.21) we get

(g) =c- [cos 77',u(g1) + sin wp(go)], rer,.  (4.29)
f 1 0

When y satisfies Eq. (4.22), g and f decay exponentially as
r— o, and thus represent a bound state. Therefore, the
quantum defect function p(€) defined for the solutions of
the modified Schrodinger equation is identical with the
quantum defect function of the Dirac functions.

(ii) Above threshold (¢>1). Let (go,}{)) be the Dirac
functions obtained by substituting #,(7) = y,(x) in Egs.
(2.16). Then, from Eq. (4.23) we get

(5) = c’cos S(g:) + sin 6(%)}, rer,.

The asymptotic behavior of g, and f is given by (2.10). The
asymptotic behavior of g, and f; is obtained from (4.18),
8o~A coslpr — Ym + 6, + nIn(2pr)),

fo~ — AQsin(pr — Vm + 8. + 7 In(2p7r)),
where the relativistic Coulomb phase shift is given by Eq.
(2.11a). It follows from (4.30) that §(¢€) is indeed the phase
shift, with respect to the regular solution of the Dirac equa-
tion in the point Coulomb potential, caused by the non-Cou-
lomb part of the potential. As we already saw, §(€) is also
the phase shift, with respect to the Coulomb function u,(7),
caused by the non-Coulomb part in the modified Schro-
dinger equation (3.5).

Thus, Egs. (4.24)—(4.26), which connect the phase
shift §(¢) and the quantum defect p(e) of the modified
Schrodinger equation, are also the desired single channel
relativistic quantum defect relations.

(4.30)

(4.31)

V. CONCLUSION

We have shown that the Dirac equation in a screened
Coulomb potential can be transformed to a modified Schro-
dinger equation [Eq. (3.5)] with an effective potential. The
close similarity between the modified Schrodinger equation
and the Schrodinger equation suggests that various proper-
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ties of the Dirac equation can be derived from the corre-
sponding properties of the Schrédinger equation. We have
demonstrated the usefulness of this approach by obtaining
the relativistic quantum defect relations from the corre-
sponding relations of the modified Schrodinger equation.
We expect this approach to be useful in obtaining other prop-
erties associated with the Dirac equation.
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APPENDIX: PROPERTIES OF THE SOLUTION OF THE
SUBSIDIARY EQUATION (3.10)

1. Solution near the origin

We expand 6(r) and s(r) in power series,

o =73 87,
=0 (A1)

0

s()= Y s =1+ i 5,7

=0 I=1
On substituting in Eq. (3.10) and equating coefficients of the
same order in  we get the following set of equations:

aoég —_— ZKéO + ao = O, (A2a)
8, =ap[(c; +5)/ (2 +1—2a8,) ], I=12,., (A2b)
where
I—1 L
CI= Z SI—m—n.gm.gn‘ (A3)

mn =0
m+ n<l

The point 7 = 0 is a singular point of the subsidiary equation
(3.10). The behavior of its solution near the origin depends
on the sign of the quantity

S= aoéo — K,

where 90 is one of the two solutions of Eq. (A2a),”
o = 05; 05, = 1/6, [see (3.11a)]. When S'> 0, the point
(r=0,0= 90) isanodal point, and all the curves 8(r) reach
the point 8, as 7 —0. On the other hand, when S <0, the point
(r=0, 8 = 6,) is a saddle point, and apart from two lines
(the principal lines), no other curve 8(r) reaches the point
8,. For the solution 8, = 6,, which corresponds to the initial
value (3.11a), we have

sgn(S) = —sgn(k),

and therefore (0,6,) is a nodal point for x <0 and a saddle
point for x > 0. On the other hand, the point (0, 1/6,) is a
saddle point for « <0 and a nodal point for « > 0. It follows
thatforx <Owegetlim, , 8(r) = 6, even when the integra-
tion of (3.10) begins at #,;, > 0, with arbitrary initial value,
while for x>0 we get lim,_, 8(r) = 6, only if we start the
integration at r;,,;, = O with the initial value 6,, and integrate
outward (or integrate along the principal line, which is very
unlikely when the integration is carried out numerically).
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2. Solution in the tail region

When r>r, the screening is constant and Eq. (3.10) can
be solved analytically.

(1) Ionic potential, s, > 0. Let 8(r,) be the initial value
atr=r,. Then

6(r) =6, + 2y,/a,) [er’" /(1 —er’™ ] (r2r), (A4)
where the constant ¢ is given by
c=(1/F")([6(r,) — 6,]1/[6(r,) — 1/6,]).  (AS5)

(ii) Neutral atom potential, s, = 0. Here we have 8, = 0
and

0(r) = 0(r,) (r,/r)**  (r>r,). (A6)
For k <0 we choose 8(7,) = 6, and get
O(r)y=86,=0 for r>r,. (A7)

For x>0 6(r,) is determined by integrating from the origin
outward, and we get

lim 6(r) =6, =0.

r— oo

(A8)

3. Solution for k<0, r<r,

We will show that in this case 8(r) is a monotonically
increasing function. We start the integration of Eq. (3.10) at
Pinie = 7, With the initial value (r,) = 8,. Let n be the order
of the first nonvanishing, left side, derivative of the screening
function s(r) at » = r,. Then by induction the first nonvan-
ishing, left side, derivative of 8(r) at »r = r, is of the order
n 4+ 1, and we have

d"+19> d’s
7, —a (9$+1)(—_) .
(dr"*‘ W0 dr),

Since s(r) is assumed to be a monotonically decreasing func-
tion we get
n even,

(d"*'é?) {>0,
drit1/,1<0, n odd,

and therefore, in the vicinity of », (r S #,) 6(r) is an increas-
ing function of r and d6 /dr > O near r,.

Suppose that while integrating Eq. (3.10) inward we
encounter a point 7 for which (d@ /dr); = 0. Then, at this
point we have [s(7) is a monotonically decreasing function]

d 29) - ds
—| =a)0*(F +1(—~) 0.

( drz r 0( ( ) ) dr 7 <
Thus €(#) has a maximum at » = 7, which is impossible since
d@ /dr>0 for 7 < r <r,. Therefore d6 /dr > 0 for the whole
range (0,7,).

(A9)

(A10)

(Al1l)

4. Solution for k>0

We will show that 8() is a monotonically decreasing
function for »>0. Let s, (n>1) be the first nonvanishing
coefficient in (A1). Then, the first nonvanishing coefficient
(for n>1) in the expansion of 8(r) is

6, =20kS,/(n — 2y,) <0,

and therefore d@ /dr < O for r>0.

(A12)

l. B. Goldberg and R. H. Pratt 1358



Suppose that while integrating Eq. (3.10) outward we
encounter a point ¥ for which (d@ /dr); = 0. Then 6(r) has
a maximum at this point, which is, however, impossible since
d@ /dr <0 for r < 7. Therefore d6 /dr < O for the whole range
r>0.
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A geometric theory for quantum scattering when the symmetry group is semisimple is
presented. This theory is seen as a generalization of the partial wave analysis. As an application
of this theory, the S-matrix elements for scattering in the Poschl-Teller potential with
symmetry group SO(1,2), Coulomb potential with SO(1,3), and a perturbed Coulomb
potential with SO(2,3) are calculated. The last example may be considered as a model for

heavy-ion scattering.

I. INTRODUCTION

In a series of papers,' Alhassid et al. have studied the
quantum scattering problems having an SU(1,1) symmetry
group. Some examples are scattering with the Morse poten-
tial and Pdschl-Teller potential. Their work involves a pro-
cedure called the “Euclidean connection” in which they
show that the shift operators acting on the set of asymptotic
states can be written in terms of operators from the Euclid-
ean algebra, thus giving rise to recursive relations for the
transmission and reflection coefficients in the adjacent
states, and the S-matrix elements are determined. This pro-
cedure is completely group theoretical, in a sense that no
physical aspect of the problem enters the calculation, so the
result will hold [modulo the relation between the Casimir
operator of SU(1,1) and the energy Hamiltonian] for all
situations having such a group symmetry. This procedure is
extended to study the SO(2,n) groups.

Recently, we have shown? that the scattering problem is
closely related to the Radon transform if the symmetry
group is semisimple. Based on the assumption that the S-
matrix elements should look the same, we consider the
“standard” scattering problem, namely the geodesic flow
problem on the symmetric space associated with the group.
We quantize (via the techiques of geometric quantization®)
this classical system and show that the wave operators are
the dual Radon transform on the symmetric space corre-
sponding to different choices of the Weyl chambers. If the
groupis of rank 1, there are only two Weyl chambers, we can
label the resulting wave operators as incoming and outgoing,
and the scattering operator can be calculated accordingly.
The calculation is the same in the higher ranking cases, their
physical significance stil] remains to be explored.

The dual Radon transform (wave operator) operates
from the set of functions on the dual space (free states) to
functions on the symmetric space (interacting states). This
seems to suggest that the free states are expressed more con-
veniently as functions on the dual space, rather than the Eu-
clidean space. This observation leads us to consider an alter-
native to the Euclidean connection procedure. Our objective
here is to show that the S-matrix elements can be found by
comparing the asymptotic states on the symmetric space and
the free states on the dual space, a method similar to the one
employed by Frank and Wolf.* Moreover, the comparison
has been performed for the spherically symmetric functions
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[the states |k,0) in the SU(1,1) case or, in the Coulomb case,
the states that have only radial dependence]. The results are
the celebrated Harish-Chandra c-functions, and have been
computed for all semisimple Lie groups by Gindikin and
Karpelevic.?

This paper is organized as follows. In Sec. IT we present
the formal setup for this comparison, and we show that this
is a generalization of the partial wave analysis. If we adhere
to this formalism, there is a constraint on the dimension of
the phase space relative to the dimension of the various
groups and subgroups in question. In the cases when the
dimensional constraints are satisfied, the calculation is
straightforward. Examples for the nice dimensions are the
Poschl-Teller potential and the Coulomb potential with
symmetry group SO(1,3). These will be done in Sec. III. In
the other cases, we need to know more about the geometry of
the symmetry group so as to choose the state spaces with the
right dimensions. In Sec. IV we give an example for the
group SO(2,3) as the symmetry group for a perturbed Cou-
lomb potential. The procedure is analogous, we hope to re-
port on the formal principle in the future.

Il. PARTIAL WAVE ANALYSIS AND RADON
TRANSFORM

The relevant details on Lie group theory can be found in
Helgason.®

Let G be a semisimple Lie group of noncompact type
with finite center, K a maximal compact subgroup. Fix a
Cartan decomposition p + k of the Lie algebra g, where the
analytic subgroup of k is K. Let a be the maximal Abelian
subalgebra of p, a* the Weyl chamber. Let 4 =exp A,
A * =expa™ be the analytic subgroups of a and a* in G,
respectively. Let M,M ' denote the centralizer and norma-
lizer of 4 in K, then B = K /M can be viewed as the boundary
of the symmetric space X = G /K. Let G = KAN be the
Iwasawa decomposition of G corresponding to our previous
choices. Define a function H: X XB—-a, H(x,b) =a if
X = b exp anK for some neN. Let o be one-half the sum of
positive roots, pea*, the dual vector space, then
exp{iu — o,H(x,b)) are the plane waves. We get the plane
wave decomposition of functions on X,

F (bu) = ff(x)exp(iy — o,H(x,b))dx. (1)
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Here F ( — 1), which is considered as a function on B, can
be decomposed further once we have a representation of the
compact group K. This allows us to label the states as
(U1 sfhpseess My ;M. ), Where m;’s are discrete correspond-
ing to the state labeling of K, and g,’s are continuous as
components of uea*.

Closely related to the plane wave decomposition of
functions on X, we have the Radon transform, first discussed
by Newton’ in the Euclidean case and was shown to have the
same significance in all symmetric spaces of the form G /K
(see Ref. 2). There the integration is over horocycles
C(b,a) = {xeX |H(x,b) = a} or

F(ba) = f f(x)S(H (x,b) — a)dx. 2)

The set of horocycles are parameterized by = = G /MN,
where C(b,a) is given as b exp aMNeZ, where X is known
as the dual space of X. We can rewrite (2) as

F(b exp aMN) =ff(b exp anK)dn. 3)

This is the Radon transform.

Physically, b is the outgoing asymptotic “direction,” a
is the dual coordinate to the “energy” u. So X is the space of
asymptotic data, and (3) can be interpreted as the inverse of
the scattering (outgoing) wave operator. In the incoming
direction, the calculation is the same as above except we
choose the opposite Weyl chambera™ = —a™.

Let L*(2) and L *(X) be carrier spaces of representa-
tions of G. Denote | + p;,m;)s and |u;,m;) x the states in
the two spaces with the given label. We can consider them as
the free and interacting states of given asymptotic data, since
| +p;,m; )5 are the Radon transforms of |u;,m,) y with re-
spect to a* and a~. The transmission and reflection coeffi-
cients are given by comparing these states. This comparison
is well defined via the polar coordinates on X and 2:

X=K/MxA*, T=K/M xA. 4)
We now have asymptotically
llu"m>x ~A |#sm>z +B1 —,m)s. (5)

For the K invariant states, 4 = c¢(u) is the Harish-Chandra ¢
function. In this sense, the transmission and reflection coeffi-
cients are extensions to the ¢ functions, corresponding to
choosing a* and a~, respectively. Furthermore, this com-
parison is just a generalization of the partial wave analysis.
In the standard case, G is of rank 1 (rank G = dim a), u is
interpreted as the energy, K =~SO(3), M =~S0(2),s0 B=S>
The explicit formulas calculated by Gindikin and Karpele-
vic will suggest a functional form of the matrix elements.

If the symmetry group is of rank 1, then there is an
essentially unique Casimir operator. This operator plays the
role of the quantum Hamiltonian for the dynamical system.
In the case where the group is of higher rank, we have more
than one Casimir operator, and the correspondence between
the quantum observables and the Lie algebra representation
is unclear. Different correspondence will result in complete-
ly different dynamical systems. For instance, we know that
the group SU(1,1) is the symmetry for a particle in the
Poschl-Teller potential, so if we have two noninteracting
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particles moving in this potential, the symmetry group for
elastic scattering is SU(1,1) X SU(1,1) =S0O(2,2). Thisis of
course different from the case considered by Alhassid er al.
in which one particle is moving in a two-dimensional space,
with a modified Poschl-Teller potential.

If the space G /K is appropriate, then the procedure as
described will give correct S-matrix elements. Examples in-
clude the Poschl-Teller potential with SU(1,1) =SO(1,2),
Coulomb potential with SO(1,3), and the two noninteract-
ing particles with SO(2,2). We will also consider the group
SO(2,3) as the symmetry group of heavy-ion scattering,
here the isotropy group is not the maximal compact sub-
group. The procedure is analogous, it turns out that X is the
coset space SO(2,3)/S0(1,3). We note here that Radon
transform has been generalized to these situations (known
as double fibrations in Helgason®), although not as com-
plete.

lll. APPLICATIONS TO SCATTERING
A. Poschi-Teller potential

Here we assume that the dynamical symmetry decom-
poses according to the chain SO(1,2) DSO(2). The sym-
metric space X = SO(1,2)/SO(2) can be realized as a hy-
perboloid. Let us take the upper sheet of the two-sheeted
hyperboloid

X = {xeR’|[x,x] = 1, x,>0}, (6)
where x = (xg,x,%,), [ , ] denote the pseudometric
( + — —). The dual space is the cone

Since SO(1,2) acts on X and I, we define interacting states
and free states as eigenfuctions to the Casimir operator of
SO(1,2) on X and 3, respectively. As indicated earlier, we
will perform a comparison between the states on X and =
corresponding to the same eigenvalues for the chain
SO(1,2) DSO(2). Denote |u,m) x and |u,m) s as the states
on X and Z, respectively, we want to determine the transmis-
sion and reflection coefficients 4 and B such that

lum)y =A| +pum)s +B|—pm)s. (8)

Choosing coordinate x,=cosha, x,=sinha cos 6,
X, = sinh ¢ sinh @, the Casimir operator takes the form

1 d d t a2

€=~ na 9 M e g O
and

lu,m)y =t (a)e™,

wm(a)=P", ,,(cosha), (10)

sz |ﬂ’m>x - ( '—/-1'2 - 1/4) |/‘L’m>X’

where P denotes the conical functions.® Similarly, choose
coordinate on X as y,=e% y, =e“cosf, y, =€e*sin b,
then the Casimir operator is
> , d

da®  da’
The eigenfunction are of the form ¢”f(8) with eigenvalue
AF+olfo=tiu—1Lo*+o=pu>—1 weset

C?s (1)
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I iﬂ!m>2 — e( +in — l/2)aeim9‘ (12)

The coordinates are chosen so that the comparison is
performed under the limit as a approaches infinity. One
need only to get the asymptotic expansion of
P™, _1, (cosha). We have®

(27 sinha)'?P™,, _,, (cosha)
:ei,ua F(llu’) . evi,u.a F( _llu) . (13)
4 +m+iu) rd+m-—iu)
The S-matrix elements are
CG+m—ip) . _Tlp) (14)
Frd+m+iuy T(—iu)

B. Coulomb potential

Let X = {xeR *|[x,x] = 1,x,>1} be the upper sheet of
the unit hyperboloid on which the symmetry group of the
Coulomb potential SO(1,3) acts naturally, [ , ] is the met-
ric + — — —, X=80(1,3)/SO(3). Choose coordinates

X, = cosh a,

(X1,X2,X;) =sinh af), Qe&S?in R 3,

Via a similarity transform 1/sinh a, the Casimir operator
takes the form
az L
- +

da?
(where L is the Laplace operator on S %), the eigenvalues are
1> + 1. So the eigenfunctions satisfy the equation

a2 (/I +1) ) 2
- + N = ‘@,

( da’® sinh? b=p"9
where ¢(a,Q) =sinha-P ~'~'2,_, ,(cosha)-Y,, (),
the P are the conical function and the Y are the spherical
harmonics.® The work of Ref. 9 can now be reinterpreted as a
partial wave analysis described above. Notice that in both
these cases, via a similarity transform, the Casimir operator
on = becomes simply d 2/da®. We suspect that this is true, in

general, thus we always compare the interacting states with
e

(15)

_ 16
sinh? (16)

(17)

IV.HEAVY-ION SCATTERING

It was reported’ that heavy-ion scattering possesses an
SO(2,3) symmetry. Here we will show that this problem can
be recognized as a short range perturbation on the Coulomb
interaction, and that the group SO(2,3) enters naturally.
The comparison procedure described above is applied and
the results are consistent with those obtained by Alhassid et
al.

Let X ={xeR>}|[xx] =1}, [ , ] is the metric

+ 4+ — — —,X=80(2,3)/50(1,3). We parametrize X
as

(x,,x,) = cosh a-w, (18)

(X3,X4,Xs) = sinh a* Q,
withweS 'in R 2, Q&S ? asbefore. Via the similarity transform
1/sinh a-cosh'/? @, using the fact that the eigenvalue is
4#* + 3, the Laplace equation on X reads
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a2 I+ 1) k2—1 ) 2
Coo=[ -2 — L2t B F YRR
b ( da? sinh’a  cosh’a #

(19)
where — k2 is the eigenvalue of the operator 3 2/dw?. One
sees that this equation is a perturbation of (17), the last term
corresponds to a potential of the form e /7 (see the Ap-
pendix). Notice that if £ = 1, Eq. (19) becomes that of the
Coulomb problem. Our procedure suggests that we should
compare the eigenfunctions with eigenfunctions on the
asymptotic cone 2 = {yeR °|[y,y] = 0}.

From Ref. 1, the S-matrix elements are

S(u.l k)
| TQU k34 )DRU — K+ + i)
S TQU k3= )G~k +§— )
Note than when k& = , this reduces to the Coulomb S matrix.

So our comparison trick will give the same result in these
cases. Equation (20) yields the following recursive relation:

= [0 +k—4+iw)/U+k—}—iu)]Sulk).

(21)
So we need to show that our comparison gives the same rela-
tions.

(20)

Let
J
J:a—+1-cotha+ (k—1)-tanha, (22)
o
then we have, C as in (19),
C([_ 1),¢k — I)J ,#,l,k >X = JCI,k l#’l’k )X' (23)

Thus J plays the role of a shift operator, whether J belongs to
the SO(2,3) algebra is immaterial. So asymptotically,

const-lu,] — Lk—1)
=J|u,bLk,) z(ai + 1+ k— §>~ (4-¢"* + B-e~ ")
o

=(p+I+k—1A4e*
+(—ip+I+k—1)Be ¥,
and we do get the same recursive relations.
In conclusion, we have embarked on a geometric theory,
which complements the algebraic theory of Alhassid ef al.,
for scattering in the presence of a group symmetry. We see
that this theory is an extension to the partial wave analysis,

and that the geometric consideration simplifies the calcula-
tion.

(24)

APPENDIX: CANONICAL TRANSFORM FOR POSITIVE
COULOMB SPACE AND THE HYPERBOLOID

Here we give explicitly the SO(1,3) equivariant canoni-
cal transform between the positive energy phase space of the
Coulomb problem and the phase space of the geodesic flow
problem on the hyperboloid. This allows us to estimate the
size of the perturbation term in (19). The construction here
is similar to the one given in Souriau and Onofri'® for the
negative energy case.

Let T*_ R * denote the subspace of the cotangent bundle
on R ? on which the energy E = p*/2 — 1/q is positive. De-
note 7*H the cotangent bundle on the hyperboloid
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H = {yeR *|[y,y] = 1, yo>1}. For convenience, we can (via
a reduction'!) identify T*H as the subspace {(y,7)eR*
XR*[yyl =1, [ym] =0} The symplectic form is
dno Ndy, — Zdn; Ady; so that the SO(1,3) actions are ca-
nonical. Then the canonical transform T*H—-T*_ R is

y=Acosht+ (B/vV — [B.B})sinh ¢,

Al
7 =1 — [B,B]-A-sinht + B cosh ¢, (al)
where
t= (qip)\/ZE’

4 (g.p) ]

= » B = [

\/2E'q'p,-] (gp)p; — 4:/9)/V'2E
The perturbation term (k? — 1)/y,?, both near and far

away from the scattering center, assumes the form

(k? —Dexp( — 4Eq)/(2Eq)*. (A3)

Thus we see that this term is a short range potential
which grows as 1/ at the origin.
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A mechanism by which space-time topological modifications could have been controlled, in the
early universe or at the Planck length, to enable onset of spinor structure is investigated. This
mechanism (based on a reshuffling of topological charges and related modification of
characteristic classes) could provide a gravitational analog of the Aharonov—Susskind
Gedankenexperiment proposed to detect relative rotation in the universe, spinor behavior, or to
keep track of the two homotopy classes of the Lorentz Lie group. The space-time topology
[and in particular the trivial (nontrivial) bundle structure at conformal null infinity] provide
a labeling of the asymptotic Lorentz homotopy classes which originates in the first Chern class
(enclosed magnetic mass) or in the parametrization of the second homology group, and gives
rise to a necessary (and sufficient) condition for the existence of spinor structure. This
underlines the intertwined roles of topology and curvature. The mechanism could also be
viewed as an “unwinding” of gravitational magnetic monopoles with one asymptotic region
into electric mass (black-hole) solutions with two asymptotic regions. In such situations a
discrete PT symmetry could emerge from a continous transformation. Possible implications on

the CPT theorem are mentioned.

. INTRODUCTION

Since the discovery, in 1956, of parity nonconservation
in weak interactions, it is believed that the concepts of right
and left physical systems can be unambiguously defined pro-
vided space is orientable. Indeed such a statement could not
be made if a closed circuit within a disoriented laboratory
could transform a particle into an antiparticle: in this case
the combined transformations, charge conjugation (C) and
space inversion (P), would not enable us to define the con-
servation of right-left symmetry in space. Equivalently, in a
disoriented three-space, space inversion is not a discrete
transformation but a continuous one' and CP invariance
does not enable us to decide whether two remote particles
are identical or are a particle and an antiparticle since the
conclusion would depend on the path along which the two
particles are brought to the same point. However, the abso-
lute difference between matter and antimatter has been ex-
perimentally confirmed by the CP violation in the K®-meson
decay, and nonorientability of space seems to be excluded by
the same token.?? It is to be underlined here that such con-
clusions are drawn under the requirement that causality vio-
lation is excluded, i.e., that space-time does not contain
closed timelike world lines.

Since one might question the availability of causality,
e.g., in the early universe or on a cosmic scale (and we shall
do so here), it is of interest to search for mechanisms that
could explain the onset of orientability or even bring support
to a further question: Why should there be orientability in
the universe or PCT invariance?

2 Détachée du Ministére des Relations Extérieures, Paris, France.
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It has often been underlined that this issue is related to
that of observability of a relative 27 rotation of two systems
(certainly a 27 rotation of the entire universe should not be
observable), and to the existence of spin structure.*”’

Underlining a key point—a spinor changes sign when a
basis completes a 27 rotation, returning to its original posi-
tion after 477 rotation—Penrose has suggested® a mechanism
(based on a Gedankenexperiment proposed by Aharonov
and Susskind®) to test spin structure. The Aharonov-Suss-
kind apparatus is a box with perfectly reflecting wails which
is divided into two identical compartments (by an impen-
etrable partition which may be open or closed off by a shut-
ter) and which contains an electron. A relative (quasistatic)
27 rotation between the two compartments can be detected
if the electron wave function in box 1 is allowed to produce
an interference pattern with the wave function in box 2 after
uniform equal magnetic fields have been applied to the dis-
connected compartments in the direction of the spin of the
electron. The relation with spinor structure emerges from
the following argument. The physically measurable proper-
ties of a spinor ¢! can be determined from its corresponding
null bivector (null flag). If ¥* undergoes a (phase) rotation
¢ »e®y?, it is clear that ' changes sign; it takes a 27
rotation to bring it back to its initial value, in this rotation the
null flag undergoes a 4+ rotation around its attached null
direction k* = ¢ ¢*". This is related to the existence of two
homotopy classes in the Lorentz Lie group .%°—every closed
path in this group being either homotopic to the 27 rotation
(element of the nontrivial homotopy class) or the 47 rota-
tion (the trivial class)—and to the fact that the SL(2,C) Lie
group is the universal covering group of .#, two elements
L4 and M% of SL(2C) giving rise to the same Lorentz

group element if and only if L4 = + M 4.
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Since the definition of a spinor bundle . over a curved
space-time M involves the intertwining of the fundamental
group of M with that of the Lorentz group, the role of topol-
ogy is crucial and has been investigated by various auth-
ors.>™® The basic idea is to start from the principal fiber
bundle & of oriented-time oriented orthonormal bases, to
unwrap each fiber into a principal SL(2,C) bundle B over M,
a spinor structure being defined as a second principal fiber
bundle . over B with a 2-1 mapping ¢: “ ~B. If Z is
simply connected, closed curves contained within a fiber and
corresponding to the nontrivial 27-rotation homotopy class
can be deformed outside the fiber into the trivial curve and
the notion of a spinor field cannot be defined. It is known
that & will fail to be simply connected if the second Stiefel-
Whitney class of M vanishes. If M is noncompact, it is also
known® that a spinor structure exists if and only if M is paral-
lelizable.

In presence of intricated space-time topologies, M may
fail to be orientable, or time oriented. In such a case & does
not exist and the usual notion of spinors cannot be defined. If
M is orientable and time oriented, & can be unwrapped into
B without unwrapping M provided 7, (Z ) = 7, (M) X Z,;
if this condition is not satisfied, the notion of spinor structure
cannot be defined. It is also of interest to underline that the
above features of the SL(2,C) representation are related to
the presence at the quantum level of two irreducible repre-
sentations'® which are conveniently labeled by the values of
the Casimir operators m? (squared mass) and S'? (squared
angular momentum) of the SL (2,C) Lie algebra. The results
presented here might suggest that a canonical generalization
in the context of quantum gravity could be provided by the
squared mass and the squared angular momentum mono-
pole.

These considerations are intended to motivate the view-
point we would like to develop, i.e., the existence of spinor
structure and orientability could have been controlled in the
early universe or at the Planck length through an appropri-
ate reshuffling of topological charges and related modifica-
tion in the homology classes of the space-time manifold.

We shall take advantage of the availability of various
Maxwellian features of gravity in presence of suitable nontri-
vial space-time topologies to propose a mechanism rather
reminiscent of that designed by Aharonov and Susskind for
the detection of spinor structure in presence of a Maxwellian
magnetic field. Our analysis will be based on previous re-
sults' "3 concerning the structure of magnetic mass source-
free solutions to Einstein’s equation.

A simplified picture of the gravitational apparatus to be
investigated could be the following: the two compartments
of the Aharonov-Susskind boxes are provided by the two
asymptotic regions (or mirror universes) of the Kruskal—
Schwarszchild black-hole solution. A reshuffling of the
(electric) mass monopole into the magnetic mass monopole
(which could be supported by the following geometrical in-
terpretation: decreasing the area of the event horizon,
shrinking the region of trapped surfaces, and smooth absorp-
tion into a causality violation and single asymptotic region)
has been investigated in Refs. 11-13. As a result of the trans-
formation, a nontrivial bundle structure (.S ' Hopf fibering
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and transition functions) is induced at conformal null infin-
ity .#. One could thus draw an analogy between the above
setup and the Aharonov—Susskind apparatus, where the
opening of the shutter would correspond to the absorption of
the “entropy reservoir” into new topological features, and
the interference pattern to nontrivial bundle structure at .#,
S ! Hopf fibering and transition functions measuring the en-
closed magnetic charge.

In the main body of this paper we shall prove that the
parametrization of characteristic classes involved in the de-
finition of magnetic mass (second homology class and first
Chern class) induces a (0-1) labeling of the homotopy
classes of the (asymptotic) Lorentz Lie group as well as a
mechanism to keep track of their possible mingling (as one
moves from fiber to fiber within the principal frame bundle)
along closed space-time paths, thus providing a necessary
(and in many cases sufficient) condition for the existence of
spinor structure. This is strongly reminiscent of a setup pro-
posed by Geroch® to keep track of spinor structure in the
universe by moving Maxwellian—Aharonov-Susskind boxes
along space-time tracks. However, the control here is purely
gravitational, global, and uses topological charges (charac-
teristic classes) which originate in the bundle structure at
null infinity.

Since the above criterion is purely global and since we
rely on the space-time asymptotic structure, we would like to
propose the following viewpoint. If gravitational magnetic
monopoles could have “unwinded” into black holes (elec-
tric mass monopoles) in the early universe, a mechanism to
control onset of spinor structure would be provided.

Finally the above transformation can be shown'? to be
associated to an invariant (gravitational) charge C, and to
the onset of a PT discrete symmetry (between two-mirror-
asymptotic regions) emerging from a continuous transfor-
mation (acting on the—-single—asymptotic region of a grav-
itational magnetic monopole solution). This leads us to
comment, in our concluding remarks, on a possible (theo-
retical or experimental) link between the CPT theorem and
the onset of spinor structure.

Il. PRELIMINARY REMARKS

Let us briefly summarize some relevent properties of the
spinor representation. Recall that a spinor space is a pair
(W,e 5 ), where Wis a two-dimensional vector space over C
and €,; = — €5,, a skew-symmetric two-index tensor in-
ducing a mapping from W into its dual W *, hence playing
the role of a nondegenerate metric. The corresponding group
of transformations is that of linear mappings L: W-W
which are metric preserving:

GCDng‘LgeAB’ (N

i.e., elements of SL(2,C).

A four-dimensional complex vector space Y can be asso-
ciated to W, which admits a real section V with Lorentzian
metric (signature + ,-,-,-) given by

8448 = €4p€4'p- (2)

It can be checked that
A3 =L3L3 (3)
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is metric preserving (a proper Lorentz transformation):

8ccop = A& ADD 8au s - 4)
Furthermore L 4 and M 4 give rise to the same Lorentz ele-
mentiff L 4 = + M4, reflecting the fact that SL(2,C) is the
universal covering group of the Lorentz group (two-valued-
ness of the spin representation). It is the condition that this
two-valuedness can be consistently eliminated over an entire
space-time which enables the definition of global spinor
fields, reflecting the presence of a spinor structure.

Since the Lorentz Lie group .¥ is doubly connected—a
path representing a 27 rotation cannot be continuously de-
formed to the identity whereas a 44 rotation can be—a spin
structure must be able to keep track of the presence of these
two homotopy classes, providing a homomorphism from
(%) into Z,, taking the value O on the trivial class (con-
taining the 4 rotation), unity on the other class. Following
a geometrical argument proposed by Penrose,” we suggest
that such a homomorphism could be associated to the onset
of topological charges or equivalently specific homology
classes. Recall that to every one-spinor £* €W one can asso-
ciate a bivector F, ,.pp. defined via

Flop 19F 4485 =6AB-¢-5A’B’ + €45 Pun> (3
where ¢, = £,£5. This bivector (or null flag) is attached

to a pole represented by the direction of the null vector
E1EY" . Let us denote by f, the (phase) rotation defined via

fo(E") =e“g". (6)
The induced transformation on F,, is
fo(F) =F, cos 280 — +F,, sin 20. @)

On another hand, a basis (£%,7*,£-7 = 1) being chosen in
W, F,, can be expressed as

Fop =28,w,) (§w=0), (8a)
the (phase) rotation inducing a rotation of the two-flat de-
fined by

Sow, =w, cos 26 + v, sin 20, (8b)

where (£°,w”,0”) is an orthonormal triad in Minkowski
space. Hence f, induces a reversal of the spinor sign
(f, &1 = — fi£*), and a winding of the null flag around its
pole &7, a 4sr rotation of this flag being required to bring back
&1 to its original value. Thus the flag and its null pole have
the availability to keep track of the double valuedness of the
spin representation. Let S, denote a two-sphere surrounding
the point at spatial infinity in Minkowski space, and let us
assume that F,, is a (plane-wave) source-free Maxwell field.
Denote by

C,= | *F,, ds*® %
S2
its electric charge, and by
C, = f F,, ds® (10)
SZ

its magnetic charge. It is straightforward to check that

SoF,, = F,, cos 280 — xF_, sin 26, (11)
Jo*F,, =F,, sin 20 + *F,, cos 26. (12)
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The quantity

C=C1+C3 (13)
is an invariant of the transformation, its vanishing (nonvan-
ishing) being governed by the second homology group of the
space-time manifold.

A gravitational analog of the transformation f; and re-
lated reshuffling of charges is available. Its topological im-
plications have been mentioned in previous papers,''~'* and
will be crucial when we shall derive criteria for the existence
and possible observability of spinor structure. The role of
spinor structure has been carefully underlined'* in the inves-
tigation of the asymptotic behavior of zero rest-mass fields.
Let us briefly summarize the situation.

From now onwards, (M.g,,,5°) will denote a solution
of Einstein’s equation R, = 0, with Killing vector field £°.
The norm and twist of £¢ are, respectively, — A = £°¢, and
W, = Eabcdgb Vcé‘d = grad o. Let hab = 8ab +/l _lgagb be
the induced metric on T, the manifold of orbits of £7. As-
suming A #0, a rescaled metric %,, and complex potential 7
can be defined"® on T:

hoy = Ahy, (14)
T=w +IA. (15)

A transformation (which was initially introduced'>™® to
generate circle families of explicit, exact, source-free solu-
tions to Einstein’s equation with one Killing vector field,
starting from one of them) is given by

Gyr = (tcos @ +sin8)/( —7sin@ +cos9). (16)

The expression of the resulting solution g, (8) is given ex-
plicitly in Ref. 16. The topological charges that can emerge
from the action of G, are obtained from three real diver-
gence-free vector fields V¢ (i = 1,2,3) on T, and their asso-
ciated curl-free two-forms €, V<=F, (i=12,3) on T.
These forms admit the following pullbacks on (M,g,,; ):

Fl=V[A 78], (17)
F2 =V, 04 6] — Jeua VE, (18)
Fl =V, (A 7@+ A&

— 24V, £y — 0€,pea VE”. (19)

Integrating %, on a two-sphere S 3° surrounding the point
at spacelike infinity on T leads to various conserved quanti-
ties:

o ZJ Ffzb ds®, i=123. (20)
s3

Furthermore, under the action of the circle group, these
charges are reshuffled according to

G,V =VScos’0—V3isin20 + V5sin?6, (21)
Gy Vi =1V1sin20 4 V4 cos 20 —1V§ sin 26, (22)

GoVi=V{sin?0+ V3sin20 + V9cos’h.  (23)

It is easily checked that Q@ = Q,Q, — Q3 is an invariant of
the transformation Gy, a gravitational analog of the charge
C.
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The reshuffling of Q,’s under the action of the cyclic
group (phase rotation) can be related to a modification in
the structure of characteristic classes and consequently de-
cide on the existence of spinor structure. This will be investi-
gated in the following sections.

1Il. MAGNETIC MASS AND CHARACTERISTIC CLASSES

Let us briefly review a definition of the magnetic mass
based on various results''~'* concerning the asymptotic
structure of the NUT (gravitational magnetic monopole)
source free solution to Einstein’s equation. For the exact
NUT solution it has been shown elsewhere'’ that this con-
served quantity reduces to the NUT parameter (angular mo-
mentum monopole).

An asymptotically NUT gravitational magnetic mono-
pole source-free solution to Einstein’s equation will be a
space-time with conformal null boundary .# exhibiting the
topology of an S ' (Hopf fibering) bundle over S, the two-
sphere of orbits of #° (the null normal to .#"). The structure
of this bundle has been analyzed in Refs. 11-13. The key
point here is the availability (and expression) of the bundle
curvature two-form ), defined by the pullback to .# of

?‘rlzb =Q-1*Cncndncndlm6nab’ (24)
where O 'C,,,, denotes the rescaled Weyl tensor, (/°,
n®,m®, m°) is the usual Newman-Penrose null tetrad in the
neighborhood of S (I'n = — 1), and €,,, = €,5.41%, €
= ¢***?p,. We know also from Ref. 13 that 2, is related to
the unphysical Riemann curvature via

Qab =D[aSZ 1Pe»
where S,, = R,, —1Rg.,.

(25)

If a timelike Killing vector field is available on the phys-
ical space-time, we also know'® that Q,, is (essentially) the
pullback to & of F, =V ,4 ~'&, ;. _

Finally ©,, is the lift to .# of a closed two-form £}, on
S*, an element of H ; (M), second homology group (in the
asymptotic region). The fact that this Q,, is not globally
exacton.S © (discontinuities in its potential ) gives rise to the
magnetic mass.

Definition: The magnetic mass of an asymptotically
NUT (source-free) gravitational magnetic monopole solu-
tion M, is defined as the value of an element Q,, of
H? (M)—second homology group'? of the asymptotic re-
gion of M—on the two-chain S ~.

Corollary 1: The magnetic mass can be conveniently la-
beled by

Cl = ﬁab dS ab,
5=

the first Chern class of the .# bundle. The parametrization of
H?(M,R) provides the (integer) number of twists of &
around its S ' Hopf fiber.

Corollary 2: If H2(M,R) is trivial, Q,, is a closed and
globally exact two-form: the magnetic mass vanishes, imply-
ing that .# is a trivial S > X R bundle (zero twist).

As we shall see, in the next section, the value of the
magnetic mass provides a homomorphism from & 2(M) into
the first homotopy group of the asymptotic Lorentz Lie
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group which enables us to keep track of the homotopy
classes as one moves within a (possibly multiply connected)
space-time. This is precisely what is expected from a crite-
rion for the existence of spinor structure.

1V. CONFORMAL NULL BOUNDARY AND AHARONOV-
SUSSKIND APPARATUS

We want to show that the available structure at confor-
mal null infinity (for the source-free nonradiative solutions
considered in the previous section ) could be used to designa
device for the detection of spinor structure. As was already
mentioned in the Introduction, the resulting setup could be
viewed as a gravitational analog of that proposed by Ahar-
onov-Susskind.

Recall the existence of an exact sequence of homotopy
groups®*-23:

hy,

Ty (M,x) - 77-n—l(G.x) : 7Tn-1(G’u)

—7y(M,x) -0,

where M is the base space of a principal bundle with fiber G,
x a point of M, G, the corresponding fiber, and each homo-
morphism in the sequence is the kernel of the next. [This
sequence reflects in particular the intertwining of the funda-
mental group of G,(m,(G)) with that of the base space
(7 (M)).] If M is the space-time manifold and G = . (the
general Lorentz Lie group), A,=0 is a necessary and suffi-
cient condition for J; to be a one to one mapping, i.e., for the
existence® on (a noncompact) M of a global system of (or-
thonormal) tetrads. This in turn provides a necessary and, in
many cases,” sufficient condition for the existence of spinor
structure. Since a spinor structure is associated to a homo-
morphism from 7, (L) into Z,, we shall search for a mecha-
nism to detect a charge taking the value zero or unity after a
physical object (e.g., an orthonormal tetrad) has been trans-
ported around closed paths in .%" or M. If a spinor structure
is to be available, one expects such a mechanism to be asso-
ciated to a mapping from ,(M,x) to the trivial homotopy
class of ., — x chosen in the asymptotic region. Along
these lines, an argument has already been proposed,” which
relates the space-time curvature in the neighborhood of a
point p to an upper bound on the length of those closed paths
in .Z,, which should be contractible to a point. Since the
topology of the underlying space-time manifold determines
the existence of spinor structure, sufficiently “twisted” man-
ifolds should be such that any metric that could be defined
on them would contain a minimum amount of curvature
that would prevent the existence of spinor structure. We
shall show that the space-time topology (second homology
class) or equivalently the bundle structure available at con-
formal null infinity, not only controls this amount of curva-
ture but provides a necessary (and in many cases sufficient)
condition for the existence of spinor structure. Our result
will be the following: the nonvanishing of the first Chern
class—a measurement of the magnetic mass enclosed within
an asymptotic region, as related to a parametrization of the
second homology class of the space-time manifold—pro-
vides a nonzero mapping h,: 7,(M,x) —»7,(.Z, ), thus pre-
venting the existence of a one-to-one mapping between the

1, ((Mx) -
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homotopy classes of the fibers of the frame bundle, and con-
sequently preventing the existence of a spinor structure. If
the magnetic mass vanishes (trivial bundle structure at con-
formal null infinity), A4, = 0, /, is one to one, and, with the
exception of situations involving a simply connected princi-
pal frame bundle, a spinor structure will be available.

Let p be a point in the neighborhood of infinity, .#°, the
Lorentz Lie group at p, and ¥ C .7, a closed path through
D> 1.e., aone-parameter family R % (s)0<s<1 of Lorentz rota-
tions at p. We want to evaluate the length of '; thus we need
to introduce a metric on the rotation group. Choose in M a
spacelike two-sphere.S through p, which surrounds the point
at spacelike infinity. Denote by ¥, (), 0<s<],
¥,(0) =9, (1) = p, a one-parameter family of loops on S,
originating and ending at p, and spanning .S (all points of S,
except p, lie on exactly one curve). Let ¢ “ denote an arbitrary
unit timelike vector field on M(#-t = — 1), adjust .S so that
¢t and § are orthogonal at p, and introduce at p a triad x3,
A = 1,2,3, which, together with ¢, defines an orthonormal
tetrad. For each value of 5, 0 < s < 1, we shall (Fermi) trans-
port the tetrad around y, according to

umV, X8 = +t%(tu"V,,x5), A=123, (26)
where u™ denotes the tangent to y,(u) (¥"V,u=1). In
this transport the tetrad remains an orthonormal tetrad al-
though (in general) after a complete tour on
¥s» X5 (A = 1,2,3) might not be tangential to S. As aresult of
this transport, we define at p an element R } (s) of the Lor-
entz Lie group . ,: x5 |, —, =R (s)(x]|,-0). Assvaries
from O to 1, ¥, spans the two sphere S and R ; (s) (0<s<1)
describes aclosed path € in ., [R;(0) = R; (1) = iden-
tity]. We want to evaluate the length of ¥ and decide on its
homotopy class. If a spinor structure is to exist, this class
should be the trivial one (connected to the identity), (i.e., €
should be contractible to a point). Here 75 = (d /ds)R § (s),
the tangent to ¥, is associated to an infinitesimal rotation (a
generator F,, , of the Lorentz Lie algebra) and its length is
proportional to the amount of curvature enclosed on S, with-
in the two-loops 7, and ¥, , 4. Since S is (in the asymptotic
region) surrounding the point at spacelike infinity, the lead-
ing term is provided by

J-Q,,,, ds®, (27)
where Q,, is the two-form, introduced in Sec. IIi, whose
pullback to .# provides the bundle curvature two-form, and
where o is, on § *, the area enclosed within y,* and ¢, .
(Here S = is the two-sphere of null generators of .#.) Thus
the total length of ¥ is given by

f Q,, dS*
Sw

i.e., the first Chern class of the .# bundle (or equivalently the
enclosed magnetic mass). A convenient labeling of C, is pro-
vided by the second homology class of M, hence the follow-
ing theorems.

Theorem 1: If a space-time with one asymptotic region is
enclosing a nonvanishing magnetic mass, a global system of

C = ) (28)
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orthonormal tetrads cannot be defined, which rules out
spinor structure.

Theorem 2: The nonvanishing of the first Chern class or,
equivalently, the existence of S| (Hopf fibering) nontrivial
bundle structure over S * at conformal null infinity, prevents
the existence of global spinor fields on the corresponding
(space-time) asymptotic region.

Theorem 3: The vanishing of the first Chern class pro-
vides a necessary (and in many cases sufficient) condition
for the existence of spinor structure.

For an example where the space-time topology prevents
the condition from being sufficient, see, e.g., the Appendix in
Ref. 9.

V. CONCLUDING REMARKS

(a) It was shown in Ref. 7 that a necessary and sufficient
condition for a noncompact space-time M to have spinor
structure is that M may be given a global system of orthonor-
mal tetrads. It was also underlined that this condition might
not be the most convenient one to decide on this issue. In Sec.
IV we related the criterion to the global topological structure
of the space-time manifold, reflected by the topology of its
conformal null boundary, and reduced the test for existence
of spinor structure to that of detection of a vanishing or non-
vanishing topological charge (the magnetic mass) conve-
niently labeled by the value of suitable homology classes.
Thus, although curvature plays a role [e.g., in the labeling of
the homotopy classes of the (asymptotic) Lorentz Lie
group], it is rather its intertwining with the underlying to-
pology that is crucial. The existence of spinor structure re-
flects the global structure of the space-time manifold, and
originates in the topology.

(b) The existence of spinor structure has also been char-
acterized’ in terms of the type of the Weyl tensor C,,,;, 2
sufficient condition being that this tensor be everywhere type
(1,1,1,1], [2,1,1], [3,1], or [4]. Here again the criterion
involves the existence of continuous transport of orthonor-
mal tetrads related to the principal null directions of C,,,,.

The above results suggest that a relation might exist
between the algebraic type of solution to the source-free Ein-
stein equation and its global (topological) structure as de-
scribed by topological charges, or by the parametrization of
suitable homology (cohomology) classes. Since these char-
acteristic classes are conveniently used in the classification
of fiber bundles, one might hope to be able to relate them to
the algebraic type of the (.# -bundle) curvature two-form or
to the algebraic type®* of the Weyl curvature.

(c) We have proved elsewhere that gravitational mag-
netic monopoles exhibit causality violations—continuous
time reversal (e.g., if an everywhere timelike and complete
Killing vector field is available, its orbits must be closed, or
in absence of isometry, nontrivial bundle structure with '
Hopf fibering over S ? at conformal null infinity). Such solu-

tions thus could illustrate a situation where parity reversal
becomes a continuous transformation, PT invariance being a
reasonable statement, e.g., when the principle frame bundle
over the space-time manifold is simply connected. The “un-
winding” of gravitational magnetic monopoles (i.e., NUT
solution) into (black-hole) electric mass monopoles (i.e.,
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Schwarszchild black hole) could be viewed as an onset of
two asymptotic regions, of a discrete PT symmetry and of
unambiguous notions of parity and time reversal. As was
already mentioned, an invariant (gravitational charge C) is
also involved in the transformation.

Since nontrivial topologies and multiply connected
space-times could provide observational evidence of their
existence” at some stage of the evolution of the universe
(periodicity in the distribution of quasar red shifts?) we
hope that the above considerations might consequently shed
light on a possible (experimental) confirmation of a link
between the CPT theorem and the existence of spinor struc-
ture.2627

ACKNOWLEDGMENTS

I would like to thank Professor D. Boulware, Professor
E. T. Newman, and Professor R. Wald for useful conversa-
tions. Special thanks are due to Professor J. Hartle for his
very kind help. I also want to thank J. Reynolds for his
prompt processing of this manuscript at the Institute for
Theoretical Physics, Santa Barbara.

This research was supported in part by the National
Science Foundation under Grant No. PHY82-17853, sup-
plemented by funds from the National Aeronautics and
Space Administration, at the University of California at
Santa Barbara.

'Ya.B. Zel'dovich and I. D. Novikov, JETP Lett. 1967, 2136; 1. D. Novi-
kov, A. G. Polnarev, A. A. Starobinsky, and Ya.B. Zel’dovich, Astron.
Astrophys. 80, 104 (1979); Ya.B. Zel'dovich and 1. D. Novikov, Structure
and Evolution of the Universe (U. Chicago P., Chicago, 1983), revised
edition.

1369 J. Math. Phys., Vol. 28, No. 6, June 1987

M. Suveges, Acta Phys. Hung. 20, 273 (1966).

3A. S. Eddington, Space-Time and Gravitation: An Qutline of the Theory of
Gravitation (Cambridge U.P., Cambridge, 1959).

“R. Penrose, Structure of Space-Time, Battelle Rencontres 1967 (Benja-
min, New York, 1968).

*R. Penrose, “Null hypersurface initial data for classical fields of arbitrary
spin and for General Relativity,” in report ARL 63-56 USAF, 1963.

SR. Geroch, J. Math. Phys. 9, 1739 (1968).

"R. Geroch, J. Math. Phys. 11, 343 (1970).

8Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967).

°C.T.S. Clarke, Gen. Relativ. Gravit. 2, 43 (1971).

'°E, P, Wigner, Ann. Math. 40, 149 (1939).

"'A. Magnon, J. Math. Phys. 27, 1059 (1986).

'2A. Magnon, *“Mass, dual mass and gravitational entropy,” J. Math. Phys.,
submitted for publication.

3A. Magnon, J. Math. Phys. 27, 1066 (1986).

“R. Penrose, Proc. R. Soc. London Ser. A 284, 159 (1965).

'5R. Geroch, J. Math. Phys. 12, 6 (1971).

'6M. Buchdahl, Quart. J. Math. 5 (1954).

'7J. Ehlers, in “Les Théories relativistes de la gravitation,” CNRS, Paris,
1959.

'8B. K. Harrison, J. Math. Phys. 9, 1744 (1968).

'°C. Nash and S. Sen, Topology and Geometry for Physicists (Academic,
New York, 1983).

2ON. Steenrod, The topology of Fiber Bundles (Princeton U.P., Princeton,
NJ, 1951).

213, Milnor, “Lectures on characteristic classes,” Princeton University,
1957 (mimeographed notes).

228z. T. Hu, Homotopy Theory (Academic, New York, 1959).

23F. Hirzebuch, Neue Topologische Methoden in der Algebraichschen Geo-
metric (Springer, Berlin, 1956).

24R. Penrose, Ann. Phys. (NY) 10, 171 (1960).

*5L. Z. Fang and H. Sato, “Is the periodicity in the distribution of quasar
redshifts an evidence of a multiply connected universe?,” 1985 first
award-winning essay, Gravity Research Foundation, Gloucester, MA
01930.

26R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge U.P.,
Cambridge, 1984), Vol. 1.

Z’R. Penrose, W. Rindler, Spinors and Space-Time (Cambridge U.P., Cam-
bridge, 1986), Vol. 2.

Anne M. R. Magnon 1369



Einstein-Maxwell equations and the conformal Ricci collineations
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The Einstein—-Maxwell field equations for non-null electromagnetic fields are studied under the
assumption of admitting a conformal Ricci collineation. It is shown that a non-null
electromagnetic field does not admit any conformal Ricci collineation, unless the generators of
the symmetry groups are Killing vector fields. Furthermore, it is shown that the energy-
momentum tensor of a non-null electromagnetic field can admit a conformal Ricci
collineation, if and only if the collineation is homothetic. The restrictions on non-null Maxwell
field, its sources, and its invariants implied by the symmetry condition are calculated. An
example of a space-time satisfying the Einstein—-Maxwell equations, and admitting a

homothetic conformal vector field is also given.

I. INTRODUCTION

The connection between the inherent symmetries of a
system, and their corresponding conservation laws has been
well established since the early observation of Néther." In
particular, the importance of groups of motions, generated
by Killing vector fields of a space-time, and their relation to
the conservation laws of energy, momentum, and angular
momentum is well known.>® Collineations other than
groups of motions have also been studied to a limited extent.
It has been shown, for example, that for space-times with
zero Ricci tensor, the more familiar symmetries such as mo-
tions and conformal and homothetic motions are subcases of
a more general symmetry requirement known as curvature
collineations.® Moreover, it has been shown that the allowa-
ble conformal symmetries admitted by a nonflat empty
space-time (except in the case of specific type-N metrics) are
the homothetic motions.® The significance of homothetic
motions in general relativity is yet to be elaborated; though
they have been used by a number of authors. For example,
homothetic motions have been utilized in the analysis of
spherically symmetric, and plane symmetric self-similar
space-times®’; homothetic Weyl space-times,® as well as in
certain self-similar cosmologies.’

In this paper we are concerned with Einstein—-Maxwell
field equations

R;tv zj;tafg_%g,uvfaﬁfaﬁ! (11)

Sy =jr, (1.2)

*fuvy = Q, (1.3)
admitting a conformal motion

L.g,, =24g,., (1.4)

where L denotes the Lie derivative, g, is the metric of the
space-time, and ¢ = } {'*; u is a scalar function. The electro-
magnetic field /, ,, and its dual *f, , - satisfy the identities

S 7 = o ¥ =4 fap [P}, (1.5)
fyo *favz*fyafaVZ};(faB *fﬁa)a;;' (16)
Throughout this paper, the Greek indices are tensor indices

and range over the values 1, 2, 3, 4; and the lightface Latin a,
b, c,...denote tetrad indices.
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It has been shown (see, e.g., Ref. 4) that every curvature
collineation

LgR”vpazo, (L.7)

generated by a conformal vector field £ # [Eq. (1.4) ] isalsoa
Ricci collineation,

L.R,, =0, (1.8)
provided the scalar function ¢ satisfies
d;uv =0. (1.9)

The problem that we wish to investigate may be posed in
the following context. Suppose that the field equations
(1.1)-(1.3) are satisfied for a non-null electromagnetic
field, and the space-time admits a conformal Ricci collinea-
tion. What restrictions are then imposed on the Maxwell
field f,,,, and its source j #? In particular, we want to deter-
mine whether or not these limitations depend on the form of
the scalar function ¢, as defined by Eq. (1.4).

Il. SOME GEOMETRIC RELATIONS DUE TO RICCI
CONFORMAL SYMMETRY CONDITIONS

In this section we make use of the proposed symmetry
condition, and derive relations to be fulfilled by the field
equations. These results will be used in the subsequent sec-
tion to simplify the computations.

It is well known that a non-null electromagnetic field
Jov» and its dual *f, ., can be expressed in the form

/,;tv = 2¢()(nu lv

—nl,) +2ip(m,m, —m,m,),
(2.1)

* wv — 21//()(”#]1' - nvl;t ) - 2i¢()(m‘u’71v - mumv )!
(2.2)
where ¢, and ¢, are the real and imaginary parts of the scalar
D =1f,"n"+m'm”) = gy + ith, (2.3)
The null vectors /#, n* are real, m* complex, and satisfy
l#n"z —m, m" =1, (2.4)
with all other contractions being zero.
The two invariants of the electromagnetic fields are

S [ =4(D? + D?) = 8(43 — 43), (2.5)
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Foow ¥ = 4i(D* — D?) = 1641, (2.6)

Einstein—-Maxwell equations may now be written in terms of
the above invariants and the tetrad of null vectors /#, n*, and
m* and m*. We have!®12

R, =Aln, +nl +mm, +m,m,)

=2AU,n, +n,l,) — Ag,,, (2.7)
where A is defined by the relation
A =40D =4(4} + ¥3), (2.8)
and the metric tensor has the form
8w =ULn +nl —m,m, —m,m,. (2.9)

We may express A in terms of the invariants by forming
the expression

R R = N6, = [ (fop [P + ([fup*fP*)] 65,

' (2.10)
where use has been made of Egs. (1.5) and (1.6). We there-
fore have

AP =1(R,R™) =L[(f. )P+ (fu*)?].
(2.11)

From Eqs. (1.8) and (2.11) we obtain the restriction
imposed on the invariant of the electromagnetic field, and
may be written in the form

L. A= —24A. (2.12)
Lie differentiation of Eq. (2.7) yields
LLc(n,)y+nL.(,)+n,L,(1)+1,L(n,)

—2(,n, —n,l,)=0. (2.13)

The contraction of Eq. (2.13) with /#, and r*, gives,
respectively,

L.(1,)=2¢l, —1,1°L,(n,),
L.(n,)=2¢n, — n,n°Ly(1,).

(2.14)
(2.15)
Equations (2.14) and (2.15) may be simplified if use is made

of the normalization condition Eq. (2.4), which after differ-
entiation takes the form

nLe(l,) +1"Ly(n,) =2¢. (2.16)
Eliminating the quantity n®L, (/) by means of Eq. (2.16),
we may write

L.(l) = (¢ + Ay, (2.17)

L;(n#)=(¢—/1)ny, A=¢—1°L,(n,). (2.18)

Similarly, making use of Egs. (1.4), (2.9), (2.17), and
(2.18), we obtain

m“L, () + A Ly (m,) = — 24, (2.19)
Le(m,) = (¢ —&)m,, (2.20)
L. (,) = (§+ &), S§=¢+mLy(m,). (221)

We are now in a position to write the restrictions implied on
Maxwell field, due to conformal Ricci collineation. We ob-
tain, after some algebra

L. f, =2L;po(n, 1, —n,l,)

+ 2L, Yo(m T, — Fum,) +26f,.,  (2.22)
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L, ¥, =2L:Yo(n,l, — n,l,)
— 2L po(m, M, —m, m,) + 26 *,,. (2.23)

Equations (2.22) and (2.23) may be transformed into a
more useful form. We may write these equations in the form

Lifuw =ALw + By (224)

L Sy =4y — Bl (2.25)
where

A= (¢ L g+ Yo Lgl/’o)/(ﬁbcz; +¥3) + 24, (2.26)

B= (¢0Lg¢o—¢oL;¢o)/(¢(2) +¥3). (2.27)

Taking the covariant divergence of Egs. (2.24) and
(2.25), and making use of Maxwell equations, we obtain for
the right-hand side of these equations, the relations

v =A, ¥+ B+ 45, (2.28)

Y =A 4 — B, [ — B, (2.29)
where

Vuy =L§f#v. (2.30)

Finally, applying the identities Eqs. (A3) and (A5) and the
compatibility condition Eq. (A4) for the vector field £ #, we
obtain for the left-hand side of Eqgs. (2.28) and (2.29) the
expressions

y¥w =L (j*) + 4457, (2.31)
y*#iv =0, (2.32)
The implication of the equations derived in this section

on the functions 4, B, and ¢ as defined by Eqs. (2.26) and
(2.27) are sought in the next section.

lll. DETERMINATION OF THE FUNCTIONS A4, B, AND ¢

It will be shown here that in order for the system of
equations (1.1)—(1.3) to be consistent for a nontrivial, non-
null electromagnetic field under Ricci collineation, Eq.
(1.8), the allowable conformal vector field must be homo-
thetic,

¢ = const. (3.1)

There are two cases to be treated separately; namely we
can either have a conformally invariant non-null electro-
magnetic field

case (a): Lgfw, =0 (3.2)
or

case (b): L, f,, = 7., #0. (3.3)

Case (a): In this case we obtain from Eqgs. (1.1), (2.24),
and (2.25), the simple relation

(4—-2¢6)R,, =0, (3.4)

which implies either (i) 4 —2¢#0, R,, =0, or (ii)
A4 =24, R,, #0. The results for the case of vanishing Ricci
tensor have been obtained (see, e.g., Ref. 5). On the other
hand, if R,,, #0, Egs. (2.8) and (2.26) yield
LA=0, A=4(d%+42). (3.5)
According to Eq. (2.12), a non-null electromagnetic
field satisfies Eq. (3.5) if and only if

¢ =0. (3.6)
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The condition ¢ =0, for a nonvanishing energy-mo-
mentum tensor of a non-null electromagnetic field, implies
by virtue of Eq. (1.4), that the vector field {* must be the
generator of an isometry group. The details of this case have
also been worked out by Wooley,'*!'* in his analysis of Ein-
stein~-Maxwell equations, under the assumptions
L.R,, =0,{..,, =0.Theresults for case (a) may be sum-
marized in the following theorem.

Theorem 1: In the combined Einstein-Maxwell theory,
a non-null electromagnetic field, and the Ricci tensor, can-
not simultaneously be conformally invariant.

An immediate consequence of Theorem 1 is that the
conformal invariance of Ricci tensor may be shared by the
energy-momentum tensor of a non-null electromagnetic
field rather than the field itself. This in fact turns out to be
the case, and embodies the main content of the case (b),
specified by Eq. (3.3).

Case (b): In this case Eqgs. (2.28)-(2.32), and the van-
ishing of the covariant divergence of the energy-momentum
tensor yield

B, ¥ =L, (j*) + (4p —A)j* — A, [+, 3.7)
vi/“’=Av *f”V_Bj”s (38)
St v =0. (3.9)

The analysis of these equations depends on whether the
electromagnetic field is source-free, j # = 0, which we label it
as case (1b), or otherwise, j # 0, which we denote it as case
(2b). Consequently, the behavior of the functions 4, B, and
¢, if they exist at all, may depend on quite different condi-
tions. Similarly, by virtue of Eqs. (2.24)-(2.27), the behav-
ior of a nontrival Maxwell field may likewise be different.

Case (1b): Let us consider the source-free case. In this
case, Egs. (3.7)-(3.9) become

vi'uV=Av *f,uv, j'u=09
B, %= — A, f*

(3.10)
(3.11)

Inserting in these equations, the expressions for the field
and its dual from Eqgs. (2.1) and (2.2) and contracting the
resulting two equations with the null vectors /#, n*, m*, and
m*, we find that for a non-null electromagnetic field, we
must have

4,=0, B,=0. (3.12)

The constant value of 4 may be obtained from Eqgs.
(2.12) and (2.26). In fact we have

A = ¢ = const. (3.13)

The constant B is then restricted by either one of the
following relations, obtained from Eqs. (2.26) and (2.27):

Lg¢0= —¢¢0+B¢o’ j* =0, (3.14)
L§1/’o: —¢’/’0_B¢07 j#=0. (3.15)

The corresponding relations for the Maxwell field, given
by Egs. (2.24) and (2.25), assume the form

Lyt =0Su +B*,,, j*=0, (3.16)
L. *,, =¢*%.. —Bf,.. (3.17)
Case (2b): In this case, where j ##£0, Eq. (3.9) implies

that for a nontrivalj # to exist, the determinant of the admis-
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sible non-null electromagnetic field must vanish. The van-
ishing of the determinant is equivalent to the vanishing of the
invariant'’

S ¥ =0. (3.18)

The physical implication of Eq. (3.18) is the orthogona-
lity of the electric and the magnetic fields in a local Minkow-
skian frame. From Egs. (2.6) and (3.18) we have either

Yo =0, ¢#0, j*#0, (3.19)
or

$o=0, 0. (3.20)

In either case, the function B, as given by Eq. (2.27) is
equal to zero. Equations (3.7) and (3.8) and the Lie differ-
entiation of (3.9) give us

Lj*+ (4 —A)j* — 4, f* =0, (3.21)
A, f* =0, (3.22)
fouLej*=0. (3.23)

Multiplying Eq. (3.21) by £, , and making use of Egs. (1.5),
(1.6), and (3.22), we obtain

(fHA4,=0, (ff)=f." (3.24)

Since ( f-f) is the only nonvanishing invariant of the elec-
tromagnetic field in this case, we must have 4 . = 0,ordisat
most a constant. With 4 being a constant, Eqs. (2.12) and
(2.26) give the results

A = ¢ = const, (3.25)
Lg (¢o) = - ¢¢0» (]50;&0, % =0, j”?’éo, (3.26)
L; ('ﬁo) = - ¢"/’0» ¢()¢0, ¢0 =0. (3.27)

The corresponding restrictions on the electromagnetic
field and its source are obtained from Eqs. (2.24), (2.25),
and (3.21). They will take the form

L.f,,=df. (3.28)
L§ *f;‘zv = ¢*f;tv? j##o’ (329)
L.j*= —3¢j*. (3.30)

The results obtained for case (b) may be stated in the
following theorem.

Theorem 2: In the combined Einstein—~Maxwell theory,
the energy momentum tensor of a non-null electromagnetic
field, with or without a source, and the Ricci tensor, are
simultaneously conformally invariant, if and only if the con-
formal vector field is homothetic.

IV. A PARTICULAR SOLUTION

In this section we construct a special source-free
(j* = 0) solution, satisfying the conditions (a) the princi-
pal null directions /#, and »n* are geodesics, (b) the null tet-
rad of vector /#, n*, m", and m* are parallelly propagated
along /# and »*, and (c) the null geodesics with tangent
vectors /# and n* are twist-free.

The particular solution to Einstein-Maxwell equations
satisfying the above requirements has been found, using the
Cartan’s equations of structure. We will not, however, pres-
ent the details of the calculations here, since it has also been
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worked out by Tariq and Tupper'®'” in Newman-Penrose

formalism (Debney and Zund'®'® also give some useful re-
sults shared by the principal null geodesics, and when the
tetrad vectors are parallelly propagated along them). Our
problem therefore reduces to determine whether or not Eq.
(1.4) admits a nontrivial homothetic solution for the given
metric obtained from the field equations.

The solution to Einstein—-Maxwell equations under the
assumed conditions (a), (b), and (c), may be specified by
the relations

k=64 nt=564 m'=256,+A06%, 4.1)
where the coordinates are x*: (x'=u, x>=r, x> =y,
x* = z), and the functions A,, and 4, are, respectively,

Av= (/A u"r™, A, = G/ u™r", (4.2)

with m = (3 — 1)/4, and n = — (/3 + 1)/4. The metric
is defined by Eq. (2.9) and the Maxwell field by Egs. (2.1)-
(2.3), with

DD = @2 + Y2 = 1/8ur. (4.3)
The only nonvanishing spin coefficients are

p=p= —V/4r, u=j=1/4u, (4.4)
o=5=13/4r, A=2=13/4u, (4.5)

having the intrinsic derivatives

Dp=4p%, Do=4po, Au= —4u’, A= —4lyu,
(4.6)
with all other intrinsic derivatives being zero.

With these spin coefficients, the commutation relations
Egs. (B10a)-(B10d), the tetrad components of the homo-
thetic vector field £ ¢ (a = 1,2,3,4), Eqgs. (B5a)-(B5j), and
its corresponding compatibility conditions, Egs. (B13)-
(B17), assume the form, respectively;

(AD — DAYy =0, (4.7a)
(66 —868)y =0, (4.7b)
(6D — D8 = — pbyp — abyh, (4.7¢)
(6A — A8 = udyp + AdY, (4.7d)
D¢, =0, (4.82)
AL, =0, (4.8b)
883 =485, — 06y, (4.8¢)
Ag, + DE, =24, (4.8d)
861+ D&s = —ply — ol (4.8¢)
68, + ALy = uls + AL, (4.8f)
S§3+5§4= — 20 + 2ul, — 2p65, (4.8g)
S§4=A§1 — 08y (4.8h)
81+ Dy = —pby— oL, (4.81)
(_5§2+A§4=,u§4+ﬂ,§3, (4.8))

§18%0 + §2D%o — §30%0 — §ubto + 2006(DE, — 8L4)

= 24o(@ +p&; — p51)s (4.92)
YoALs + ¥,(2D5 — 66,)

= 2¢(A8s + p8s) — 2¢2( pls + 0L4), (4.9b)
518Y; + &DY, — §33¢2 — Libth = — 201, (4.9¢)
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DG — ¥2(86, — 208,

= 2U,(AL5 + uly) — Yu( p&s + 084, (4.9d)
CiYy + E:DY, — £3B — Eabthy + 294 (AS, — 863)

=294(d — &1 + pS>), (4.9¢)
where

Yo=2p0, ¥,=12pu, Y,=24u, (4.10)

are the nonvanishing scalars associated with the Weyl ten-
Sor.

The compatibility conditions, Egs. (4.9a)-(4.9¢), and
the commutation relations Egs. (4.7a)—(4.7d), when use is
made of Eq. (4.10), give us the results

5§1=S§1=5§2=S§2=0, (4.11)
AGy = 4ug,, (4.12)
Dg, = —4ps, (4.13)
ALy = pls + AL (4.14)
885 = AL, — 045, (4.15)
D§y= —pGs— 053 (4.16)
AL, =pls + ALs. (4.17)

The integration of Eqs. (4.8a)-(4.8)) gives for the tetrad
components of £ ¢,

£y =cu, (4.18)
£r=(2¢—or, (4.19)
Cy=dyu="r " —idyzu~ "r= "+ F(ur), (4.20)
Co=diyu="r="+idyzu” "r= "+ Fy(u,r), (4.21)

where ¢, d |, and d, are constants, and F,, F, are two arbitrary
integration constants. The constants d, and d,, may be ex-
pressed in terms of the constant ¢, and the homothetic con-
stant @,

d = (a—2¢)/2, d,=a/2,

a =+6c/2 +2(1 —3)é/2.

The arbitrary constants of integrations F,, F, must satisfy

(4.22)

F,, — (1/4r)F, + (Y3/4r)F, =0,
F,, — (1/4u)F, — (3/4u)F, =0,
F,, — (1/4r)F, — (3/4r)F, =0,
F,, — (1/4u)F, — (J3/4u)F, =0.

(4.23)

The only admissible solution to the system of equations
in (4.23) is the trivial solution

Fl(u’r) =F2(u,r) =0 (424)

The complete particular solution to the Egs. (1.1)-
(1.9) with respect to the system of coordinates (u,r,p,z) may
be expressed in the following form.

For the metric we have
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0 1 0 0
1 O 0 0
B =10 0 —uy-mpom 0 ’
0 0 0 —y (4.25)
0 1 0 0
oo 0 0
o o —urr o |
0 0 0 —utmp
where m = (3 — 1)/4,and n = — ({3 + 1)/4. The Maxwell field becomes
0 — [(cos €)/y2] (ur)— 112 0 0
= [ (cose) /2] (ury—1/2 0 0 0 ’ (4.26)
0 0 0 (sin€)/\2
0 0 — (sin€)/y2 0

where € is an arbitrary real constant. The homothetic vector
field & # takes the form
;‘ "= (2¢ - C)r ’
V= —cy, {P=c¢,z,
where the constants ¢, and ¢, are

e, =vV3(c—@)/2, ¢;=+3c/2+ (1 —3)¢/2.
(4.28)

From Eq. (4.26), we see that both electric and magnetic
fields are in the radial direction with respect to the adopted
coordinate system (u,r,p,z). In addition to the homothetic
motion, the solution admits a three-parameter group of mo-
tions,

7 = 5;‘, n; =&,
7 = ubl — r8* — dySl + dzé”,

where the constant d = 3¢/2 may be obtained from Eg.
(4.28), by letting ¢ = 0.

&Y =cu,
(4.27)

APPENDIX A: CONFORMAL MOTION

We summarize here some of the relevant relations con-
cerning a conformal motion. A space-time is said to admit a
conformal motion if there exists a vector field {#, such that

nguv = ;y;v + ;v,y = 2¢gyv’ (Al)
where the symbol L, denotes Lie differentiation with respect
to the vector field £ #, and ¢ is a scalar function satisfying

$=45"u. (A2)
Every conformal motion must satisfy
LT, = $;08; + $;v8s — 8.,8 S (A3)

The integrability condition for (A1) can be shown to have
the form

;,u;v,a = gaRaav,, + ¢;0'g,_w + d;vg po dug,.. (A4)
For an arbitrary tensor K #*, we have the identity*°

Lo (K*a) — (LeK*)ia = (L T4 )K® 4+ (L, T) K+,
(A5)
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I
The Lie differentiation of the Riemann tensor can be ex-
pressed in the form

LgR Zva = (L{,‘rgy)hv_ (LQ‘F:#)JU (A6)
The curvature collineation is defined by the relation
L§R Zva =0: (A7)

which by virtue of Eqs. (A2) and (A3) gives the restriction
ong

duv=0. (A8)
The contraction of Eq. (A7) yields the Ricci collineation
LR, =0. (A9)

The integrability conduction for (A1) is generally expressed
in terms of the vanishing of the Lie derivative of the confor-
mal Weyl tensor

L.C:,=0.

(A10)

APPENDIX B: CONFORMAL MOTION AND ITS
COMPATIBILITY CONDITIONS IN TETRAD
REPRESENTATION

In the following we write the tetrad components equa-
tions of Egs. (A1) and (A10). We choose a tetrad of null

vector /¥, n*, m*, m*, with I* and n* real and m* complex.
The only nonvanishing contractions are

Int= —m,m' =1 (B1)
A frame defined by the inner product
ehe, =5, ehes =081, (B2)

where e “ (/#, n*, m*, m*), induces a metric of the form
0 1 0 0

0 0 0

0 O -1y

0 -1 0

ab

Nep =5 = a,b=1,2,34.

1
0
0

(B3)

Equation (A1) in tetrad representation takes the form
é‘a;b + ;b;a = 2¢77ab + gc(yacb + ybca )’ (B4)
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where 7,,. are the Ricci rotation coefficients. Equation (B4)
is equivalent to the set of scalar equations

DEy = (€ +€)6, — KG3 — kG, (B5a)
AL, = — (¥ + V)6 + V65 + VL., (B5b)
86, =8, — 06, — (@ —B)Es, (B5c¢)
S§4=/{§1 —5’§2-— (a—ﬁ)gm (B5d)
AL+ DG, =24+ (¥ + V)6, — (e + €))L,

+ (7 =76 + (7 — 1), (B5e)
66, + Déy = (@+ B+ 7)) — k&,

+ (e —€—p)¢; — 0b,, (B5f)
81+ Dty = (a+B+m)E, — K,

+ (€—€—p),,— 0L, (B5g)
8, + AL =V, — (@+B+7)5,

+ 4y =T+ AL, (Bsh)
85, + Al =v4, — (a +B+1E,

+ @ +7 =7+ AL, (B5i)
5§3 +68,= =20+ (u+p)§, — (p+p)§;

+ (@ =B+ (@ — B (B5))

where the spin coefficients offy- - - are related to the Ricci
rotations and may be expressed in the form

Y31=K Yi32=7, Yi3z=05, Vi34 =5, (B6)
= -7, = —,

Y241 T VY2 (B7)

Vs = — by Yaa= — 4,

Yizi=€+€ Vin=VY+7 (B8)

Yis=B+a, Yau=a+p.
The intrinsic derivatives are defined according to the rela-

tions
J

D¢ = ¢§/Ll“’ A¢ = ¢;:u'n#’

~ (B9)
8¢ = dum”, 5¢ = $um*,
and are satisfied by the commutation relation
AD—DA = (y+7)D + (e4+&)A
— (r+ 78— (F+m)8, (B10a)

8D —DS= (a@+f—7)D+KkA — 08— (p+ € —€)5,

(B10b)

SA—~AS= —¥D+ (r—a—BA
+A8+ (u—y+ 78, (B10c)

66 —86= (L —p)D+ (p—p)A
—(@-P)%— (B—alé. (B10d)

Equation (A10) can be written in the form

Cabeaps ” + Copealb 738 + Cppoa§ P50 + Coppal Fic + Copn6 55d
= 20Copeq + EF [ Crpead (VaP + ¥ "pa)
F+Cored Ve P+ YV ) + Copa (VP +7Y )
+Cabcr(7/drp+7/rpd)]' (B11)

The independent components of conformal curvature tensor
may be expressed in terms of the five complex scalars ¥,
¥y, tPs. We have

Con=v+ 17’2, Coiz=v;, Cpp= — 17’3’
Cise= — ¥ + 17/2, Ciin=vo Cipu= —1,
Ciza= —¢), Cup= 124’ Coza= — 123’
Czg =9+ l_bz» Ci31a = Ci33 = Cp324 = 0.

Making use of Egs. (B5a)-(B10d), and (B12), Eq. (B11)
becomes

(B12)

518, + 5Dy, — §3S¢o — 540 + 240 (DS, — 884) + 2¢,(85, — D&3)
=200+ 29[ 2y — ), + (e —€E+p)6, + (m —22)E5 + (7 — B —a),]

+2h[(B+a—21—7), — k5, + (E—€+ 20 —p)3 + 06,],

(B13)

EiAY, + 6D, — §38%, — §ub — oA, + ¥1(DS, — 864 + (85, — 2D53)
=Pl(m+7)0 — A8+ (¥ =7 —p)6ul + [y —p)l, + (e —€+p)5, + (7 = 2a)85 + (T — @ — B)E,]

+l(@+ B —27 — 37)8, — Gy + (3p — p — 26 + 26)5 + 2061 ,

(B14)

&1y, + £:Dy, — §35¢2 — 5400, + ¢1(3§2 — AL,) + ¢5(88, — DEy)
= =20, + ¥, [vE, + (277‘+?—a—§)§2—}»§3+ (y =7 +u—21)8,]

+9l@+B—2r =T — kG, + (2p —p — €+ )55 + 0G,],

(B15)

$1AYs + £oDhy — §38Ys — LBty — YaDEs + Y3 (AL, — 8L3) + ¥,(8E, — 2AL,)
=Vl + Br+ 27 —a —B)C, — 245, + QY — 27 + 1 — 3u)&4]
+UlF—y =B+ (p =265+ (@+B—T)s+ (2B —1)E )+t — (1 + )6y + (E— € + p)Es + olal,

(B16)

5\AY, + §:DY, — §35'/f4 — £ + 294 (AL, — 5§3) + 245(8L, — ALL)
=209, + 2 (vE, + QT +T - “E)gz — AL+ (v =7+ —2u),]

+2[(F—y—m) + (p—26)5 + (@ +B—T)o5+ (2B — 1))

1375 J. Math. Phys., Vol. 28, No. 6, June 1987

(B17)

Abbas M. Faridi 1375



'E. Néther, Nachr. Akad. Wiss. Goettingen II, Math. Phys. K1. 1918, 235.
2W. R. Davis and M. K. Moss, Nuovo Cimento 33, 1558 (1965).

*@G. H. Katzin and J. Levine, J. Math. Phys. 9, 8 (1968).

*G. H. Katzin, J. Levine, and W. R. Davis, J. Math. Phys. 10, 617 (1969).
5C. D. Collinson and C. D. Frech, J. Math. Phys. 8, 701 (1967).

SM. E. Cahill and A. H. Taub, Commun. Math. Phys. 21, 1 (1971).

"A. H. Taub, General Relativity: Papers in Honour of J. L. Synge, edited by
L. O'Raifeartaigh (Oxford U. P., London, 1972), Chap. VIII, p. 133.
8B. B. Godfrey, Gen. Relativ. Gravit. 3, 3 (1972).

°D. M. Eardley, Commun. Math. Phys. 37, 287 (1974).

'%C. W. Misner and J. A. Wheeler, Ann. Phys. (NY) 2, 525 (1957).

1376 J. Math. Phys., Vol. 28, No. 6, June 1987

""P. A. Goodinson and R. A. Newing, J. Int. Math. Appl. 6, 212 (1970).

"“P. A. Goodinson and R. A. Newing, J. Int. Math. Appl. 5, 72 (1969).

'“M. L. Woolley, Commun. Math. Phys. 31, 75 (1973).

M. L. Woolley, Commun. Math. Phys. 33, 135 (1973).

*R. K. Sachs, Proc. R. Soc. London Ser. A 264, 309 (1961).

'*N. Tariq and B. O. J. Tupper, Gen. Relativ. Gravit. 6, 345 (1975).

'7N. Tariq and B. O. J. Tupper, Tensor (N.S.) 28, 83 (1974).

®G. C. Debney and J. Zund, Tensor (N.S.) 22, 333 (1971).

"“G. C. Debney and J. Zund, Tensor (N.S.) 25, 53 (1972).

K. Yano, The Theory of Lie Derivatives and its Applications (North-Hol-
land, Amsterdam, 1957).

Abbas M. Faridi 1376



Exact solutions for space-times with local rotational symmetry

in which the Dirac equation separates
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The field equations for the class of perfect fluid space-times with local rotational symmetry in
which the authors had earlier shown the Dirac equation separates are studied. For the vacuum
and dust cases all possible solutions are exhibited. Other solutions correspond to radiation, a

stiff fluid, and a fluid with negative pressure.

I. INTRODUCTION

In an earlier paper1 (hereafter referred to as I) we inves-
tigated the problem of separability of the Dirac equation in
perfect fluid space-times with local rotational symmetry and
showed that separation was possible only in a certain sub-
class of the whole family. The geometrical properties of these
space-times were also obtained but the question of the specif-
ic space-times in this subclass was left unanswered. In this
paper we study the field equations for these particular space-
times and attempt to isolate those exact solutions which fall
in this category. For the vacuum (p =p =0) and dust
(p = 0) cases all the possible solutions are exhibited. Some
exact solutions for other interesting sources like radiation
(p =1p), astiff fluid (p = p), and fluid with negative pres-
sure (p + p = 0) are also obtained. Though most of these
solutions were known earlier we present a unified and sys-
tematic treatment of the different cases of particular interest
as background metrics wherein our earlier separation of
variables for the Dirac equation is applicable.

In the next section we set up the field equations for the
relevant solutions. In Secs. IIT and IV we obtain all the vacu-
um and dust solutions, respectively. Section V contains some
solutions corresponding to radiation, a stiff fiuid, and a fluid
with negative pressure.

Il. SPACE-TIMES WITH LOCAL ROTATIONAL
SYMMETRY WHEREIN THE DIRAC EQUATION
SEPARATES

As demonstrated in I the space-times with local rota-
tional symmetry in which the Dirac equation separates are of
the following four types.

Case I:

ds®> = (1/F2)dx%—dx" — Y2(dx® +t2dx¥), (la)
where

F=F(x"), Y=Y(x". (1b)

Case II1:

ds? =dx” — X2dx" — Y2(dx* + t2dx*), (2a)
with

X=Xx%, Y=Yx9. (2b)

Case II a:

ds* = (1/F2)dx® — X2dx" — Y2(dx* + 12dx*),

(3a)
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where
F=FX%, X=X(x"), Y=Y(&"). (3b)
Case Il b:
ds* = (1/F?)dx" — X2 dx" — Y2(dx* + t2dx"),
(42)
where
F=F(x°), X=X(x), Y=Y(&°. (4b)
In the above equations 7 is one of the four functions
oL .. 2
(i) t= const, (i) t=x°, (5)

(ili) ¢z=sin(x?), (iv) ¢ =sinh(x?).

It is clear that the solutions corresponding to ¢ = const
and 1 = x” are related trivially by transformations from Car-
tesian to cylindrical coordinates in the x%-x3 plane, i.e.,

x¥ = x%sin(x3). (6)
Consequently, these two cases can be treated together.

Further, in Cases II a and II b, by the following transforma-
tion of coordinates

x¥ = x? cos(x?),

x0 = F%_—Z—;, x1=J.X(J_c‘)d)'c‘, (7
the line elements become the following.

Case Il a:

ds* =dx” —dx" — Y2(dx* + t2dx¥), (8a)
where

Y=Y(x"). (8b)

Case II b:

ds* = dx" —dx" — Y?(dx* + 12 dx¥), (9a)
with

Y =Y(x%. (9b)

In this form Eq. (8) is a special case of (1) with
F = const while Eq. (9) is a special case of Eq. (2) with
X = const.

Choosing units c¢=87G=1 and signature
(+,—,—,—) the field equations are

G,=T,, (10a)
where for a perfect fluid

T,=@+pUU, —pg.. (10b)

Introducing € such that
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0, for t = const,

e=14 41, fort=sin(x?), (11)
— 1, fort=sinh(x?).

Equation (10) for Case I becomes

2—$~+ STy P (122)
Y, F Y?2
F Y F F Y
LA 2
For Case III one obtains

X,Y, Y5 € (13a)
222 0 4 Sy,

xy Tyr TP

Y V&
20+ % +—Y2-= -» (13b)
Y X, Y, X

,00 + ,0+.0 + ,00 — _p (13C)

Y XY X

As mentioned earlier, Case Ila corresponds to
F=const in Egs. (12) while Case II b corresponds to
X = const in Egs. (13).

The field equations should be supplemented by the
equation of state for the perfect fluid which we prescribe to
be of the form

p=(—1)p. (14)
The conservation equation for 7% gives

T, =0. (15)
For Case I Eq. (15) gives

Po=p,=p;=0 (16a)
and

pY4FYr=1 — const, (16b)
while for Case III we have

p(XY?)? = const = p,, (17a)

P1=pP,=p;=0. (17b)

Though not useful for the vacuum and dust cases the
above ‘““first integrals” are useful in the other cases.

lil. VACUUM SPACE-TIMES (y=1; p=p=0)

Case I: If F = const, Egs. (12) become

Y% =g Y, =0 (18)

Thus for € = 0, one obtains a flat space-time in Carte-
sian coordinates while for e = + 1 one finds Y2 = (x')?,
which is a flat space-time in spherical polar coordinates.
There is no solution for e = — 1.

From Eqgs. (12a) and (12b) Y = const is possible only if
€ = 0. In this case Eq. (12c) gives

F, /F—2F%/F*=0, (19)
which on integration yields
1/F? = (x')? (20)

(here and in later parts all trivial integration constants are
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transformed away by a suitable translation or scaling). This
is just a Minkowski space-time in Rindler coordinates

x' = x' cosh(x?). (21)

In general (i.e., if F, #0, Y, #£0) by adding Egs. (12a)
and (12b) and integrating we obtain

¥° = x! sinh(x?),

FY, =C, (22)
Equation (12a) can be rewritten as

2Y /(Y4 —€) + 1/Y =0, (23)
which on integration gives

Y(Y3 —¢€)=0C,. (24)

Solutions of (22) and (24) satisfy (12c) identically.
Hence a solution of Eq. (24) yields a solution of the field
equation. From Eq. (24) for € = 0, we obtain

Y2 = (x1)4/3’ F2= (x1)2/3, (25)
which is the plane symmetric Taub solution?

ds* =z V3(dT? — dz*) — z(dx* + dv*); z>0,

(26a)

as follows by the transformations

T="% z=@)*"*x""",

x = (%)—2/3)(2’ y= (%)*2/3x3.
For € = 1, the solution may be implicitly given as

Y= — (¢,/2){1 4 cosh(2p)),

F= + ¢ cothp, (27)

+x'+¢;= — (¢,/2)(sinh(2p) + 2p).

On transforming to coordinates (x%p,x*x?), one obtains

(26b)

ds? = tanh? p dx” — 4c2 cosh® p dp?

— ¢2 cosh? p(dx? + sin® x> dx™"). (28)

This is just a Schwarzschild solution of mass ¢,/2 as can be
seen by transforming to coordinate #:

r = ¢, cosh’(p). (29)
It is also one of the Levi-Civita degenerate static vacuum
solution type AI (Ref. 3).

For € = — 1 one obtains

Y =c,sin’*(p), F= +c¢,tan(p),

+x'+ ¢y = — (c,/2)(sin(2p) — 2p),
which in coordinates (x°, p, x%, x*) give

(30)

ds? = cot? p dx® — ¢ sin* p(4 dp* + dx* + sinh® x? dx*’).
(3D

This is the degenerate static vacuum solution due to Levi-
Civita® which in the classification of Ehlers and Kundt? is
class AII In terms of coordinates

z=c,sin’p, (32)
ds® = (cp/z — 1)dx” — ((¢o/z) — 1)" 1 dZ?
— 22(dx” + sinh® x2 dx*"). (33)

Case III: Let us now turn to Egs. (13). If X = const they
become

Yi= —¢€ Yo =0. (34)
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Asfor Egs. (12) for € = O one has a flat space-time in Carte-
sian coordinates while for € = — 1 one obtains ¥ 2 = x?’.
This is just a Milne universe: a flat space-time in Rindler-like
coordinates, as can be seen by the transformations

%% =x%cosh x?, X'=x!,

(35)
%% = x%sinh x? cos x?, %* = x° sinh x? sin x>.

From Egs. (13a) and (13b) Y = const is possible only if
€ = 0. In this case Eq. (13c) gives

Xoo =0, ie, X=x" (36)

This again is a flat space-time in Rindler-like coordinates

¥° =x%cosh x!, Xx'=x°sinhx". 37

We now consider cases when neither X nor Y'is constant. As
before, taking the difference of Egs. (13a) and (13b) and
integrating we obtain

X=¢cY,. (38)
Equation (13b) on integration gives
Y(Y5 +€)=c, (39)

Solutions of Egs. (38) and (39) satisfy Eq. (13c¢) identical-
ly. For € = 0 one obtains
Y=x"", X=@x%"'73 (40)

which is a Kasner space-time with local rotational symme-
try. The Dirac equation in this case is treated in more detail
elsewhere.*

For e = + 1 we obtain

Y=c,sin®T, X= +c, cotT,

. (41)
+x% 4+ ¢; = (¢,/2) (2T —sin 27),
which in terms of coordinates (7, x', x?, x*) gives
ds* = 4¢? sin*TdT? — ¢ cot® Tdx"
~ ¢ sin* T(dx” + sin® x> dx*). (42)
Transforming to
T=c,sin’ T, r=c,x! (43)

yields the “inner” sector of the Schwarzschild solution, i.e.
(r<e;)

ds? = (¢,/T—1)"'dT? — (¢,/T — 1)dr?

— T2(dx* + sin® x* dx*).

For e = — 1, on the other hand,

Y= —c,cosh?T, X= Fc ,tanh T,

+ x° 4+ ¢; = (€,/2) (sinh 2T + 27,
which in terms of (7T ,x',x?,x*) yields

ds® = 4c? cosh* TdT? — ¢? tanh® T dx"

(44)

(45)

— ¢2 cosh® T(dx” + sinh? x* dx*"). (46)

Once again going over to
T=cycosh®> T, r=cx', (47)

we obtain
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ds’ = (1 —¢,/T) " 'dT?— (1 —¢,/THdP
— T?(dx* + sinh? x2 dx*"). (48)
This solution is to the Levi-Civita static solution AII (Ref.

3), the analog of the R < 2M region of the Schwarzschild
solution.

IV. THE DUST SOLUTIONS (y=1, p=0)

In Eq. (12) corresponding to Case I for dust, if F; =0,
then Egs. (12b) and (12c) become

Y} —e=0, Y, =0, (49)
which when compared with Eq. (12a), givesp = 0. Thus no
dust solutions are possible in this case. Similarly, for Y% =€
no dust solutions exist.

In general, however, Eq. (12b) gives
F,/F= (Y} —€)/2YY,. (50)

Differentiating (50) and substituting in Eq. (12¢) one ob-
tains

ZX]I/Y+(Y'21—E)/Y2=O, (51)
which employing (12a) gives p = 0. Thus no dust solution is
possible for Eq. (12). They seem to be possible only in

metrics of subclass I1I corresponding to Eq. (13).
If X, =0, Egs. (13) yield

Yo +e=p,
Yoo/Y+ (Y% +€)/Y* =0,
Yoo/Y=0,

which are consistent only for p = 0. Thus one does not have
dust solutions with X = const. From Eq. (13b) Y = const
solutions are only possible for € = 0, which from (13a) im-
plies p = 0. Thus one does not have such dust solutions ei-
ther. If X, #£0, Y0, Eq. (13b) can be rewritten as

(52)

2Y Yoo/ (Ys +€) +Yo/Y=0, (53)
which gives

Y (Y% +€) = const. (54)
For € = 0, Eq. (54) is solved by

Y= (c,x°+c,) (55)

Replacing Y in (13c) from Eq. (55) one obtains for X, the
differential equation

X,TT “%X,T “‘%X=O’ (56a)
where

T= log(clxo +c?). (56b)
Consequenfly, the general solutions for X is

X = les(ex® +¢3) + e/ (ex® + e, (57)

Substituting for X and Y from Egs. (55) and (57) in Eq.
(13a) yields p:

(58)
By a simple translation and scaling, the metric becomes

ds® = dx% — ((x° + &) /x°" dx"’

p=1csc1/(ex° + ¢;) [e3(ex® + ¢;) + 4] .

—x*(dx? + dx*), (59a)
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where
a=c,/c; and p = §(x02 4+ ax®) . (59b)
For the special choice of @ = 0, Eqs. (59) yield
ds? = dx® — x°"(dx" + dx* + dx*), (60a)
p=4/03x"). (60b)

This is the Einstein—de Sitter solution for dust which has
homogeneous and isotropic spatial sections. However, if
a #0 we obtain a more general solution which does not seem
obviously equivalent to the @ = 0 case. For € = 1, the solu-
tion may be written in the implicit form

Y=c,sin* T,

) (61)
+ x° 4+ ¢, = (¢,/2)[2T — sin 27T7).
Substituting (61) in Eq. (13c) then gives
X /X — 2/sin*T = 0. (62)

By inspection X = cot(7) is a solution to the above equa-
tion. To find the other solution let

X = Veot(T) (63)
in Eq. (62) so that V satisfies

Vopr/Vy=2csc* T /cot T. (64)
The above equation is integrated and finally one has

X=c;(1—=TcotT)+c,cotT. (65)
Substituting (61) and (65) in Eq. (12a) we have

p=cy/ct sin* T'[e; — cot T(c;T—c¢y)] . (66)
In terms of (7,x',x*x*) one has

ds? = 4sin* TdT? — [1 —cot T(T —¢)]* dx"

— sin* T(dx? + sin® x? dx*), (67a)

p=1/sin* T[1 — cot T(T—C)] . (67b)
Similarly, fore = — 1,

Y =c, sinh® T, (68)

+x°+ ¢, = (¢,/2) (sinh 2T — 2T7).
Substituting into Eq. (13c) gives

X /X — 2/sinh*> T =0. (69)

As before, since X = coth T'is a solution of (69) we write

X=Vcoth T, (70a)
V'is then a solution of

V oo/ V.r = (2csch’ T)/(coth T), (70b)
and consequently

X=c;(TcothT—1) + ¢, coth T. (71)

For this case

p =c5/c; sinh* T [e;(TcothT — 1) +c4cothT] .
(72)

In terms of (T,x',x%x*) we thus have
ds* = 4sinh* TdT? — [(T + B)coth T — 1]2dx"
— sinh?* T(dx? + sinh? x2 dx*"),

p = 1/sinh*T[(T + B)coth T — 1].

(73a)
(73b)
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The dust solutions given by Eqgs. (67) and (73) for
€ = + 1 are those obtained by Kantowski and Sachs.’

V. OTHER SOLUTIONS

If F = const, adding twice Eq. (12c) to (12b) one finds
that the equations are consistent with (12a) only if
p + 3p = 0. This case is not of physical interest. Similarly if
X = const adding two times (13c) to (13a) one finds that
there is consistency with (13b) only forp =p,ie, ¥y =2.1In
this case, choosing X = 1 we obtain from Eq. (17)

p=ci/4Y* (74)
Substituting in Eq. (13a) and integrating we get
X0 = J _ 2rdy ) (75)
For ¢ = 0, the solution after suitable scalings give
ds? = dx® — dx" — x°(dx® + x¥ dx*), (76a)
p=c/ax”. (76b)
For € = 1, similarly,
ds® = dx® — dx" — (2 /4 — x%) (dx* + sin® x> dx*),
(77a)
p= (/M) (3 /4—x) 72, (77b)
whereas fore = — 1,
ds® = dx® — dx" — (x — ¢2/4) (dx*
+ sinh? x> dx*), (78a)
p=c/4/(x" —c/4)2 (78b)

The solutions given by Egs. (76), (77), (78), fora y = 2
fluid is to our knowledge new.

Let us consider Eq. (13) for € = 0. Adding (y — 1)
times Eq. (13a) to Eq. (13b) and integrating one gets

X=c,(Y3Yn)2a=n, (79)
Since

p=c(XY?*) 7, (80)
one thus gets

p:CV:(Xo)r/(r-l)YV(4-3y)/2(y~1)’ (81a)
where

¢, =c¢/cf. (81b)

Equation (13b) thus becomes
2Y /Y + Y3/Y?

= — (y— D¢, Y- Dyré—n2a-D (82)

The above equation will now be solved for the following
interesting physical cases.

@ y=2@@=p).

For this value the right-hand side of Eq. (82) is propor-
tional to Y% /Y% Thus integrating (82) yields

Y= (c;x° +¢) VI, (83)
where
20 =1+c/ct.
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Then Eq. (79) gives X as

X = (c,/c) (1 + @) (cx° + ¢5) @~ /@D, (84)
After the usual scalings one thus has
ds?® = dx02 — (x0)a— D/t 9] dx‘z

— ()Y (dx? +dx™), (85a)
p=c/A(1+a)x”. (85b)

This solution is identical to one of the solutions in Vajk and
Eltgroth.®

B y=% (@=1ip).

In this case p is proportional to ¥ f‘o and hence Eq. (82)
becomes

2Y 0o/ Y + Yi)/Yzz —ﬁYj‘o, (86a)
where
B = ce; *”. (86b)

Substituting ¥YY % = u into the above equation and inte-
grating one obtains

u=YY4, =(,+87)"", (87)
whose solution may be written as

Y = (c,/B)sinh® T,

+x° 4¢3 = (2/16JB3) [ sinh 4T — 4T, (88)

X = c¢,¢,/B (cosh® T)/(sinh T).
In terms of (T,x',x%x?) the space-time is described by

ds® = (ct/4B%)sinh* 2T dT? — cosh® T coth® T dx"

— sinh* T(dx* + dx*), (89a)
p=168%c,/cj sinh* 2T. (89b)
Like the earlier case, this is also a particular solution from
Vajk and Eltgroth.®
©)y=0(p+p=0).
For this value of ¥, p = const = psand X = ¢, Y. Thus
Eq. (82) yields

2Y /Y + Y3 /Y =p, (90)
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The above equation can be integrated by letting ¥ /Y = u.
We get

Y = ¢;[ cosh[3p, (x° + ¢,) 721177,
X =cic3vpy/3 [cosh[\/3p0(x° +¢)72]]1 717
X (sinh [/3p, (x° + ¢,)/2]).
Thus the metric may be written as

ds® = dx” — (cosh(v/3px°/2)) =%/ sinh?( 3p0x°/2)dx12

(o1

— (cosh(y3pex®/2))*?(dx¥ + dx*). (92)

To the best of our knowledge Eq. (92) is a new solution.
For the various values of ¥ dealt with above we have not been
able to obtain solutions of Eq. (13) for e = + 1 or of Eq.
(12) fore =0, + 1.

In the foregoing we have systematically obtained the
various exact solutions with local rotational symmetry in
which the Dirac equation is separable. As was mentioned at
the outset many of them turn out to be already known solu-
tions sometimes in terms of unconventional coordinates.
Other solutions, given by Egs. (59), (76), (77), (78), and
(92), are new as far as we know. Our results, while incorpor-
ating a regular classification of these space-times would also
facilitate the study of the Dirac equation in backgrounds
exhibiting local rotational symmetry.
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Comment on the two “new” classes of Bianchi type Il solutions

Dieter Lorenz-Petzold

Fakultat fur Physik, Universitit Konstanz, D-7750 Konstanz, Federal Republic of Germany

(Received 24 June 1986; accepted for publication 11 February 1987)

Hajj-Boutros’s claim [J. Math. Phys. 27, 1592 (1986) ] that two new classes of Bianchi type I1
solutions can be generated from Lorenz’s solution [Phys. Lett. A 79, 19 (1980)] is shown to

be wrong.

In a recent paper by Hajj-Boutros' the locally rotation-
ally symmetric (LRS) Bianchi type II stiff matter solution
derived by Lorenz’ (and independently by Ruban®) has
been reconsidered. Our solution is the unique stiff matter
solution of Egs. (2.6)—(2.8)." This solution includes the
Taub* vacuum solution as a special case. It is an easy matter
of calculation to derive the corresponding non-LRS solu-
tion.” The LRS case is given by Egs. (3.1)-(3.5)."

We make the following comments. The crucial equation
in the paper of Hajj-Boutros' is given by Eq. (2.9). By taking
R=R(1),5=5(),and r= R /R (or S/S) this equation
can be considered as a Riccati equation in ». Hajj-Boutros
finds that from a known solution 7, = RO/RO (S,/S) some
new solutions (of Bianchi type II) are given by Eqs. (2.14)-
(2.17). However, this idea is entirely wrong. First of all the
Bianchi type II stiff matter solution R = R(7), S=.S5(7)
[see Egs. (3.1)—(3.4)], where the temporal variable 7 is re-
lated to ¢ by the relation dr = SR ? dr, is not a “particular”
solution of the field equations (2.4)—(2.8): it is the most
general (LRS) solution of Eq. (2.9)! Equation (2.9) can be
rewritten in the simple form
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(R'/R+S5'/8) =0, (1)

where ( )’ =d{( )/dr. The most general solution is given
by

(SR)? = exp 2(q7 + ¢),

Moreover, our solution is given by R = R(7) and S = S(7)
and not by R = R(¢) and S = 5(¢). Thus Egs. (3.6) and
(3.7) of Ref. 1 are meaningless! This is the main error made
by Hajj-Boutros. By using dt = SR ? dr the solutions given
can be reexpressed (at least in principle) in ¢ time.

For the sake of completeness we also mention the recent
critical remarks of MacCallum® concerning various “new”
and incorrect Bianchi type II solutions.

g, ¢ = const. (2)
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Nonexistence of static conformally flat solutions in a new scalar-tensor
theory

Tarkeshwar Singh
Department of Mathematics, Shree Ramdeobaba Kamala Nehru Engineering College, Gittikhadan, Katol
Road, Nagpur 440013, India

(Received 28 October 1986; accepted for publication 11 February 1987)

For the special case when the scalar field is massless and conformally invariant, it is shown
that there do not exist spherically symmetric conformally flat solutions in a new scalar—tensor
theory proposed by Schmidt et al. [Phys. Rev. D 24, 1484 (1981)] representing disordered
radiation and in the presence of a source-free electromagnetic field except for the trivial empty
flat space-time of Einstein’s theory. The solution in the vacuum case is also only a flat space-

time of Einstein’s theory.

I. INTRODUCTION

Schmidt et al.' proposed a new scalar—tensor theory of
gravitation, where the gravitational constant depends on a
scalar field which itself couples to the surrounding masses
through the curvature scalar. The idea was to obtain a possi-
ble stable configuration as a final situation in the history of a
collapsing object due to the generation of a strong scalar
field. The result was contrary to what was expected. In the
new theory a mass term was added and an arbitrary coupling
constant /3 between the scalar field ¢ and the curvature in-
variant R was also allowed. The theory was subsequently
applied to a Friedmann-Robertson—-Walker universe by
Banerjee and Santos.” Further, Singh and Singh® have
shown that the spatially homogeneous stationary perfect flu-
id cosmological model in this theory cannot include the radi-
ation-filled universe or the empty universe at the limit in the
presence of a massive scalar field. Banerjee et al.* have dis-
cussed a stiff fluid Bianchi type I cosmological model in this
theory by considering the cosmological constant A and the
mass term both being equal to zero. Finally, they have con-
sidered some special cases for 3>1 and have shown that
solutions for matter-free space include the one previously
found by Accioly et al.” for the conformally invariant scalar
field (8 = 1). Very recently, the author® has shown that an
analog of the Birkhoff theorem in general relativity exists in
this new scalar—tensor theory for the special case when the
scalar field is massless and independent of time.

In the present case we apply this general theory to the
static spherically symmetric conformally flat space-time for
the special case when the scalar field ¢ is massless and con-
formally invariant (8 = 1) (see Refs. 7 and 8).

Il. FIELD EQUATIONS AND THEIR SOLUTIONS

The gravitational field equations in the scalar—tensor
theory proposed by Schmidt et a/.! are given by

(¥ — (B/12)¢7)G,
= —iT; — i[d.:¢,; — %8y (@ 8" —p’e*) ]

+ (B/12)[(67),; — 8, (D)% ], (1
and the wave equation is
O¢ + [u* + (B/6)R 14 =0. (2)
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Here p is the mass of the scalar field, B is an arbitrary
coupling constant, and ¥ = ¢?/167G is half of the inverse
gravitational constant. The effective inverse gravitational
coupling in this theory becomes

Yer =V — (B/12)¢°
and the effective mass of the scalar field is now

Her = (4> + (B/6)R]'2
We consider the static spherically symmetric confor-
mally flat metric in the form

ds? = e*( —dr — P dB? — Psin?> 0d®? +dt?), (3)

where « is the function of » alone. We assume that the scalar
field ¢ also has spherical symmetry.

Taking ¢ as a function of r only and using (3) in (1) and
(2), the explicit field equations for the new scalar-tensor
theory can be written as

1e°T) = —(y — (B/12)¢")(3a’ /4 + 2a'/r)

+ 187 ~ Jep’e’

+ (B/12)[(2/r) (%) + 3a' (#)'/2], (4)
1T = — (y — (B/12)¢*)(a" + &’ /4 +a'/r)

—{g) — g

+ (B/12) ()" + () (@' + 1/1)] = 5e"T§%)
1e°Ts = — (v — (B/12)¢*)(a" + o’ /4 + 2a'/r)

— () — j e

+ (B/12)[(#)" +2(8")' /1 + () a'/2], (6)
e “[(D)" + (") (@' +2/7)]

_ (B/6)é [6 2 -—I—T RREyr:
T BB — /12 v THowd

YTy

_ (1;[3’) e—a(¢l)2]‘ (7)

Here a prime indicates differentiation with respect to .

1. SOLUTIONS OF THE FIELD EQUATIONS

As the field equations are nonlinear, the problem be-
comes difficult, in the general case with the nonvanishing
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mass term . So the solutions in a special case for a massless
conformally invariant scalar field (uz =0, #=1) are pre-
sented. The question of overdeterminacy is settled by satisfy-
ing all the field equations by the actual substitution of the
solution obtained. Before proceeding further we simply as-
sumey =0and B =1.

A. Vacuum solutions

It can be easily verified that when the scalar field ¢ is a
constant and 7; =0, the field equations (4)—(7) yield a
solution which describes an empty flat space-time of Ein-
stein’s theory, and when T; = 0, the field equations (4)-(7)
reduce to the vacuum case.

From Eqs. (5)—(7) we can easily obtain

e =k/(12y — ¢%), (8a)
#* = 12y — exp(k/kr + k), (8b)

where k, k,, and k, are integration constants. Solution (8)
satisfies Eq. (4) only when &, = 0. This, in view of (8), gives

#° = const, a = const.
Thus the solution of Eqs. (4)—(7) is
a = const, ¢ = const. 9

Hence the only spherically symmetric static conformal-
ly flat solution of the new scalar—tensor theory' is simply the
empty flat space-time of Einstein’s theory, when the scalar
field is massless and conformally invariant.

B. Electrovac solution

Here we consider the energy momentum tensor for a
trace-free electromagnetic field in the form

Ty=F;Fj—ig,F, F",
where F;; is the electromagnetic field tensor satisfying

F =0
and

Fij,k +F}k,i +Fki,j =0. (12)
For a static charged particle the only nonzero component of
the electromagnetic field F; is F,,. Equations (11) and (12)
now lead to F,, = ¢/, where g is a constant which can be
identified with the electric charge of the particle.

With metric (3) the nonvanishing components of the
energy momentum are

—T\=T3=T}= —Ti= —(g/r)e > (13)
Using (13), the field equations (5)—(7) admit the solution

(10)

(11)

e = (¢, +¢3)/(¢* — 12¢)77, (14a)
_ c i r(—cie)t?
¢2— IZV—CXP{W tanh 1—-'6;—2+¢0}y
(14b)

where ¢, ¢,, and ¢, are constants of integration and c; is set
equal to — 3¢°. On actual verification it was found that solu-
tion (14) satisfies each of the field equations only when
¢, = 0and ¢; = 0, which, in turn reduces the field equations
(4)—(7) to Einstein’s vacuum case.

Hence the only spherically symmetric static conformal-
ly flat solution of the new scalar—tensor theory in the pres-
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ence of a source-free electromagnetic field is the empty flat
space-time of Einstein’s theory.

C. Disordered radiation

Here we consider the energy momentum tensor due to
that of a perfect fluid distribution in the form

T, = (p +pluu; — pg;, (15)
with equation of state
p=3p, (16)

where p is energy density and p is the pressure of the fluid.
From (3), (15), and (16) the components of TJ’: in comov-
ing coordinates are

T; =diag( —p, —p, —p, 3p). (17
The conservation equation T j' ; =0leads to

dp a'

——+(p+p) —=0 18

dr PP 2 (15

Using Egs. (15)-(17) in field equations (4)—-(7), one gets
the field equations of a new scalar-tensor theory with disor-
dered radiation.

Now using (8) in the difference of Eqgs. (5) and (6) and
using (17) in the sum of Egs. (5) and (6) one easily gets
p =0 and therefore p = 0. This leads to the vacuum field
equations in which case, as shown in Sec. III A, the only
solution is the flat space-time of Einstein’s theory.

Thus there are no spherically symmetric conformally
flat solutions of the new scalar—tensor theory' representing
disordered radiation in the presence of massless conformally
invariant scalar field.

IV.CONCLUSION

In order to understand fully the scalar-tensor theories
of gravitation it is useful to have a knowledge of some exact
solutions of these equations. The search for an analytic solu-
tion is important due to the fact that once such a solution is
obtained one can study all of its physical properties. Exact
static spherically symmetric conformally flat solutions in
vacuum, in the presence of an electromagnetic field and for
disordered radiation, are considered in a new scalar—tensor
theory proposed by Schmidt ez al.! for the special case when
the scalar field is massless and conformally invariant. It is
observed that the only spherically symmetric conformally
flat solution in this new scalar—tensor theory is the flat space-
time of Einstein’s theory.
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Series representations for calculations in quantum statistics. Il

William A. Barker

Department of Physics, Santa Clara University, Santa Clara, California 95053

(Received 12 August 1986; accepted for publication 30 January 1987)

The methods developed in the first paper of this series (I) [J. Math. Phys. 27, 302 (1986) ] are
used to calculate the pressure in several cases of physical interest: conduction electrons inside
and outside a heated tungsten cathode; helium atoms in liquid helium IT and He vapor;
electrons in a white dwarf star, and photons in a cavity. The latter two cases involve
ultrarelativistic particles whose energy € = pe. The formulation in I is extended to include
particle speeds comparable to ¢. The grand potential is used to establish two useful, exact
relationships between pressure and energy density: P = 2u/3 and P = u/3, valid for v €c¢ and

vexc, respectively.

I. INTRODUCTION

In an earlier paper,' hereafter referred to as I, the three
distribution functions of statistical physics are treated in a
similar manner. In each case a single integral suffices. The
quantity Ce” is averaged over the Maxwell-Boltzmann
(MB), Bose-Einstein (BE), and Fermi-Dirac (FD) distri-
butions. Here C is a constant and € is the particle energy
raised to any power p. Reference 1 develops simple schemes
for evaluating these integrals. The MB integral [Eq. (2)] is
written in closed form in terms of the gamma function of
p + 1. The BE integral [Eq. (8)] is the product of the gam-
ma function and the Riemann zeta function of p + 1. The
FD integral [Eq. (27)] is written as a rapidly converging
series of derivatives for any value of p. In the literature, some
calculations, using the quantum statistics of highly degener-
ate gases, are quite formidable. Now it is really quite easy.
The physical properties of various systems of interest can be
investigated with very little mathematical effort.

The purpose of this paper is to illustrate this point for
seven cases of physical interest. We focus on a single thermo-
dynamic coordinate, the pressure, and we calculate this
quantity for the following: (1) the conduction electrons in-
side a heated tungsten cathode, (2) the conduction electrons
in the evacuated region between a heated tungsten cathode
and an anode, (3) the helium atoms in liquid helium II at 1
K, (4) the helium atoms in helium vapor at 1 K,(5) the
ultrarelativistic electrons in a white dwarf star, (6) a photon
gas in a cavity, and (7) a laser beam.

Il. GENERAL RELATIONSHIPS BETWEEN PRESSURE
AND ENERGY. THE GRAND POTENTIAL

The grand potential®
Q=3 0, = FATY In[1 £ * %] (1)
k k

is applicable in determining various thermodynamic proper-
ties of a Fermi, Bose, or classical gas. Here (), is the grand
potential for the energy ¢, . The familiar distribution func-
tion of a particle in the & th state is obtained by

I, 1

n, = — alu =e(ek—/£)/ij: " . (2)
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If u/kT is large and negative, as it is in the classical case,
n, = 1/e T (3)

Formally the energy U for each of these three cases, in the
nonrelativistic limit, is

__€7”de
U= CJ- e(s u)/kt+ 1 0 (4)

where C = (25 + 1) (V /47*) (2m/#?)*/2. Here S = spin,
V = volume, m = particle mass, and # = Planck’s constant
divided by 2+

Now convert (1) from a sum to an integral, integrate by
parts, and compare with (4). We find that

Q= —2U/3. )
Using® O = — PV, it follows that
PV =2U/3 (6)

for nonrelativistic fermions, bosons, and classical particles.
If, on the other hand, the particles are ultrarelativistic, then
€ = pc replaces € = p?/2m. The constant C in Egs. (2), (6),
and (16) of I should be replaced by

C'= Q2SS+ )V 2rhc. N

This follows from the changes in the volume element
47p’ dp in momentum space. There are corresponding
changes in the integrands which are taken care of by the
proper choice for the power p. The expression for the grand
potential now becomes

g _C [__€de _ U -
3 Jo el mAT L0 3
Therefore,
PYV=U/3 &)

for ultrarelativistic particles.

l. THE PRESSURE OF A GAS OF CONDUCTION
ELECTRONS INSIDE AND OUTSIDE A HEATED
TUNGSTEN CATHODE. S=1

Case 1 (Inside): The conduction electrons collide fre-
quently with phonons. Consequently their ambient speed is
very small indeed compared to c.
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It is easy to show that the conduction electrons inside a
tungsten cathode constitute a degenerate Fermi gas: Com-
pare 1, the quantum concentration,® with #, the actual con-
centration of electrons in tungsten,

ng = (mkT /27#)** = 2.16X 10*/cm’. (10)

Here m is the electron mass, k is Boltzmann’s constant, and
T is the temperature of the heated cathode, taken here to be
2000 K. On the other hand

n = fNop/M = 127x10°/cm’, (11)

with f=the number of free electrons per atom =2,
p =density of tungsten = 19.35 g/cm? M = atomic
weight = 183.85, and N, = Avogadro’s number. We find, as
expected, that n/ny = 588> 1.

We seek, therefore, the pressure of a nonrelativistic, de-
generate gas of electrons of concentration n. We use
PV =2U/3from (6) and the FD expression Eq. (30) for U
from I,

# 572 T \?
P= 377,2 2/3 n5/3(1 ( ) ) 12
( ) —5 + ——-12 T, + (12)

The contribution of the first term in (16) is P,, the pressure
at absolute zero. Numerically P, = 7.40 X 10° atm, with »n
taken from (11). The increase, AP, in the pressure due to the
second term in (12) is 1.05X 10’ atm. Here T = the Fermi
temperature = u,/k = 1.072 X 10° K for tungsten. The very
large value for the pressure is due to the high concentration,
n, of conduction electrons, which is raised to the 5/3 power
in (12).

Case 2 [Ourside (halfiway between the cathode and the
anode)]: The conduction electrons which are boiled off of the
cathode are clearly nonrelativistic since eg, < mc?, where ¢,
is the anode voltage.

It is easy to show that the conduction electrons in the
evacuated region between the cathode and the anode consti-
tute a classical MB gas. Again we need n, and n. The quan-
tum concentration n, = 1.25X10'"/cm® where we have
used a nominal 7= 300 K in (10) instead of 7= 2000 K.
This is justified because a vacuum is a good thermal insula-
tor.

For simplicity, we use parallel plate geometry and the
assumption of space charge limitation. The solution is very
well known.” It leads to the Child-Langmuir law® and en-
ables us to calculate n.

The current density

J=nev=2.33X10"%,?/d* = 2.16 X 10*°/cm?
(13)

if we choose ¢, = plate voltage = 50 V with d = cathode-
plate separation = 2 X 10~ ? m.
The potential

Kx*?*=19.8V (14)

forK, = 9.18 X 10° V/m*/3 if we take x = d /2. The electron
speed follows from

mv/2 = ed. (15)

We find v=2.64x10° m/sec™! and n =4.88x10°
cm > We see that v/c=8.8%10"3«1 and that n/ng
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=3.90x 10~ «1. The electron gas is nonrelativistic and
nondegenerate as expected.

The pressure of this gas follows readily from PV = 2U /3
and U = 3NkT /2 [1, Eq. (5)]. We obtain the familiar equa-
tion of state for an ideal classical gas

P=nkT=2x10"" atm. (16)

Comparing Cases 1 and 2, it is interesting that conduc-
tion electrons boiled off from the cathode represent a minute
fraction, 3.8 x 107!7, of the conduction electrons inside a hot
cathode. The outside electron gas pressure is 2.7 x 10~
times the inside gas pressure. It is even 16 orders of magni-
tude less than the pressure due to the small 7-dependent
termin (12).

IV. THE PRESSURE OF A GAS OF HELIUM ATOMS. S=0

Case 3 (Liguid helium at 1 K): We expect that this sys-
temn will be a nonrelativistic Bose gas. The Einstein conden-
sation temperature’ in He* occurs at 7 = 2.174 K. This is the
temperature at which the number of atoms in excited states
equals the total number of atoms. As the temperature is
lowered, there is a condensation of atoms into states of zero
momentum. At 1 K only 20% of the normal component of
He* remains,® 80% is superfluid with no velocity. The nor-
mal atoms have speeds® ~ 50 m sec ™! <.

The density of liquid helium at 1 K is 0.145 g/cm®. To
find the concentration n, we use (11) with f=1, M =4,
Thus n = 2.18 X 10°?/cm?. To calculate the quantum con-
centration ng, we use (10) with m = helium atomic
mass = 6.64x 107> g and T=1 K. Thus n, =152
% 10*'/cm® and n/ng, = 14.3> 1.

The helium gas is a nonrelativistic, degenerate boson
gas, as expected. To find the pressure we use PV =2U/3
with U taken from I, Eq. (14):

P=1341 nykT. (17)

The numerical factor in (17) is the Riemann zeta func-
tion {(3) = £2_, m /% Numerically P = 0.278 atm. We
note that the pressure of the degenerate He gas is indepen-
dent of the concentration of helium atoms, varies as 7°/2
since ny, ~ T/, and is slightly greater than ! of one atmo-
sphere. Inasmuch as we are using an ideal gas model to de-
scribe a liquid, the results can only be considered qualitative-
ly correct. However, if we use Eq. (11) of I to calculate the
Einstein temperature on this model it turns out to be 3.15 K
as compared to the experimental value of 2.174 K. Accord-
ingly, we might expect the pressure results to be correct
within a factor of 2 or so.

Case 4 (The vapor pressure of helium atoms at 1 K): We
expect that this gas will be nonrelativistic and nondegener-
ate. The vapor pressure of helium is important in measuring
temperature. Consequently it has received a lot of attention
and can be calculated in several ways. We chose the empiri-
cal equation of Clement, Logan, and Gaffney,'’

InP=I—-A/T+BlnT+ CT?/2
—D((aB/B?—1) — T Ytan~"(aT—pB). (18)

Here P is measured in mm of Hg. The constants are
1=4.6202, A4=6399, B=2541, C=0.00612,
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D =0.5197, a =7.00, and = 14.14. This expression,
which lacks the sixth term given by Clement et al., is of
sufficient accuracy for our purposes. For a given T, we can
compute the pressure which we use in the following statisti-
cal calculation.

At the lambda point, 7= 2.174 K and P = 38.47 mm of
Hg. At T= 1K, P=0.116 mm of Hg, a decrease by a factor
of 332 from the vapor pressure at the condensation tempera-
ture.

At 1 K, using (18) and assuming the gas is classical,

P=nkT=153%x10"*atm (0.116 mm of Hg). (19)

From (19), n = 1.20X 10'8/cm®. We calculated the quan-
tum concentration in Case 3 and accordingly we find that
n/ng =7.73x10~*, well within the MB regime. Using

mv*/2 =3kT /2 (20)

we calculate v = 7.90 X 10° cm sec ~ ! <c.

This justifies the assumption that the helium gas, in this
case, is nonrelativistic and classical. It is interesting that the
ratio of helium atoms in the vapor to helium atoms in the
liquid at 1 K is 5.51x 10~>. The ratio of the corresponding
pressures is 5.50 X 10™%, Both these values are several orders
of magnitude larger than the corresponding ratios of elec-
trons outside and inside a hot metal.

V. ULTRARELATIVISTIC PARTICLES

Case 5 (Electrons. S=4): Consider a Fermi gas of ultra-
relativistic electrons. This problem is important in the the-
ory of white dwarfs.'! Relativistic effects occur when a gas is
compressed, the average energy of the electrons rises, and
the Fermi energy becomes comparable to the rest energy.

It is no longer correct to take

po = (#/2m) (37°n)*? (21)

to solve for 1, because (21) is obtained by considering parti-
cle energy nonrelativistically as € = p?/2m. Instead by using
€ = pc, the correct expression for p, is obtained from the
integral

NCJ

where C' is given by (7). It follows from I, Eqs. (16) and
(27), that

ede

e(s /,t)/kT+1 (22)

to = (3n?) e, (23)
Now take u, = mc* and solve for n,
n = (mye/#)*/37 = 5.86X10°° cm™>. (24)

This is six orders of magnitude larger than the concentration
of conduction electrons in a metal. This suggests, but does
not establish, high degeneracy. The reason is that it is not
correct to compare this # with the quantum concentration
n, given by (10). We note that there ng ~ m>'? and that for
the ultrarelativistic case m, = 0. Equation (10) is derived
for € = p>/2m and like the Fermi energy must be rederived
for € = pc. With the aid of Eq. (2) from I, p=2,C-C', it
follows that

p=kTIn(n/ny)(2S+ 1)~
This is the same form as Eq. (3) in L, but now

(25)
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ny = (kT /#ic)* /7. (26)
The temperature in the interior of a white dwarf!?is ~ 10’ K.
Thus n/ny, = (myc?/kT)*/3 = 6.98 X107, which proves
this gas to be highly degenerate.

In the ultrarelativistic case PV = U /3 [see (9) ], where
U can be found from Eqgs. (16) and (27) inIwith C—C ' and
p = 3. It follows directly that

= 37) 3 (n*)he/4 = 1.19x 10" atm, (27)

where n is given by (24).

Case 6 [Photons: v=c, m, =0, S= 1 (the quantum degen-
eracy factor is 2 not 3)J: Consider a gas of photons in a cavity.
The fact that this gas is degenerate is very well known
historically. The correct explanation of cavity radiation by
Planck started quantum theory.!? We establish degeneracy
here by using the formalism of I,

e’ de
ele—m/kT _ |

N=C’(kT)3J s (28)
0

where C ' is given by (7). The chemical potential u for a Bose
(or Fermi) gas has a finite nonzero value if the number of
particles NV of the system is constant. But photons may be
emitted or absorbed by the walls of the cavity. Thus N is not
conserved. Therefore 12 = 0. Using Eqs. (6) and (8) in I,

n=0.244(kT /#c)>. (29)

From (26), n/n, = 2.408, which establishes the degeneracy
for any T. To obtain (29), we use {(3)=322_, m>
= 1.202.
In the ultrarelativistic regime, PV = U /3. The average
energy U may be calculated from Eqs. (6) and (8) in1 with
C—C' and p = 3. The pressure follows immediately,

P =2(kT)*(4)/m*#c, (30)

where the Riemann zeta function £ (4) = 1.082. The photon
gas pressure may be written in an equivalent, but more famil-
iar form, '

P=40T*/3c, (31)

wher o = 7%k /60#°c> W/m? (K )*is the Stefan—Boltzmann
constant. Numerically P = 3.99 X 10~ 8 atm for 7 = 2000 K
and o = 5.67 X 107 ® in SI units.

Case 7 (The pressure due to a laser beam): In the pre-
vious example, the cavity is maintained at a tempera-
ture = 2000 K. The radiation emitted, through a small hole
in the cavity, is characteristic of a thermal equilibrium distri-
bution. Photons of all wavelengths leave and enter this hole.

In the case of a laser beam, photons of a single wave-
length emerge from a “hole” at one end of a Fabry—Perot
cavity. Here, we ask, what steady state power in the He-Ne
laser at 632.8 nm is required to generate a beam pressure
which is equal to the black-body radiation pressure of Case
6? We note that this physical situation does not constitute a
statistical problem. But it does provide an interesting com-
parison.

Suppose the steady state power L of this laser is mea-
sured in watts. The beam intensity is the power divided by
the cross sectional area of the beam,

I=L/mr (32)

William A. Barker 1387



TABLE I. The pressure of various physical systems.

Temperature Pressure
Physical system Spin Statistics (K) (atm)
Free electrons Nonrelativistic 2000 7.4x10°
in tungsten i FD
Space charge Nonrelativistic 300 2x107"3
limited electron 1 MB
flow
Liquid helium atoms 0 Nonrelativistic 1 2.78% 107!
BE
Helium vapor atoms 0 Nonrelativistic 1 1.53x 1074
MB
Electrons in a white Ultrarelativistic 107 1.19x 10"
dwarf star i FD
Cavity radiation 1 Ultrarelativistic 2000 3.98x10°%
BE
The radiation pressure is tic expression € = p°/2m is used. The essential change oc-
p p P g
P=1/c=1L /mPe. (33) curs in the volume element in momentum space. In the non-

Wetake P = 4.03 X 1073 N /m? from the black-body ra-
diation problem and solve for L, with r = 1 mm.
Here L =3.80 W. This corresponds to N =LA /hc
= 1.21x 10" red He-Ne laser photons/sec.
The beam pressure is independent of wavelength, but of
course the associated number of photons/sec depends on the
energy of monochromatic photons.

VI. CONCLUSION

The results of this paper are summarized in Table I.
The methods developed in I make it quite easy to investi-
gate the physical properties of diverse systems of interest.
This paper focuses on the pressure of each system. This ther-
modynamic coordinate ranges from 10'7 atm in a white
dwarf to 10~ '? atm in the evacuated region of a diode.
Each physical system in Table I is investigated to deter-
mine whether the particle speed is nonrelativistic or ultrare-
lativistic and whether the concentration is smaller or larger
than the quantum concentration. This must be established,
along with the particle’s spin, in order to identify the appro-
priate statistical formulation, as given in Table I, column 3.
Ultrarelativistic particles, characterized by € = pc, lead
to an extension of the formalism of I. There the nonrelativis-
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relativistic case 47p’dp = 4m2'*m>' %> de. In the
ultrarelativistic case this becomes 47€” de/c®. All of the fa-
miliar quantities like chemical potential, quantum concen-
tration, and internal energy are quite different in the ultra-
relativistic regime.
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In two previous papers [J. Math. Phys. 27, 1 (1986) (I); 28, 1385 (1987) (II)] simple
mathematical procedures are developed for averaging the particle energy e, raised to any
power p>1 over Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac distributions. In I, the
particle energy is treated nonrelativistically: € = p°>/2m. In 11, the particle energy is treated
ultrarelativistically: € = pc. Here, the particle energy is treated relativistically

€ = p*c® + mic*. For each distribution function, expressions are obtained for the chemical
potential, internal energy, and heat capacity for two cases: (kT /moet)? <1 and (myc®/

kT)?«1.

I. INTRODUCTION

In the literature of classical and quantum statistics,
most calculations are made for nonrelativistic particles.’
There are some which use the ultrarelativistic case, but
there are very few which treat the particle energy exactly.’
From a mathematical point of view, this is understandable.
To average the relativistic density of states expression over
any of the distributions

fle) = 1/(e =7 T 4 1,0) ()

is indeed formidable. Furthermore, most of the cases of
physical interest are nonrelativistic. However, the math-
ematical simplifications introduced in I make it quite easy to
use two approximate forms: either (kT /myc*)*<1 or
(myc*/kT)* <€ 1. The purpose of this paper is to use these two
approximations to the relativistic density of states expres-
sion and extend I and II to derive the corresponding expres-
sions for the chemical potential, energy, and heat capacity
for Maxwell-Boltzmann (MB), Bose-Einstein (BE), and
Fermi-Dirac (FD) statistics.

Il. DENSITY OF STATES

The density of states takes three different forms in calcu-
lations using MB, BE, and FD statistics.
In the nonrelativistic approximation,* € = p*/2m and

D(e)de = (25 + D2'2Vm 2 2 de/ 2 %) . (2)
In the ultrarelativistic limit,> € = pc and
D(e)de = (28 + )Y Ve* de/ 27 #c?) . (3)

In the relativistic case, which includes the foregoing ap-
proximations,

€ =p’c* + mic* 4)
and
D(e)de = (25 + 1) Ve(e? — mic*) V2 de/(2m*Hc) . (5)
Each of these expressions is easily found from
D(p,r)dr = (2S + 1)dp, dp, dp, dx dy dz/(2m#i)* .  (6)

First, transform to polar coordinates in momentum space,
dp, dp, dp, = 47p” dp, and then use each of the three rela-
tionships connecting particle momentum and energy.
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Nl. CHEMICAL POTENTIALS; THE FERMI, BOSE, AND
CLASSICAL ENERGY

The range of energy in the three types of integrals in I
and Il'is from O to oo . This makes the mathematics tractable.
However, in the relativistic expression (4), the lower limit
on € = mc?, corresponding to p = 0. This suggests a change
in variables to x = (¢ — myc?)/kT. The general form of the
integral is now

I— f ” S(x)dx
b e~ (2 ~ my®)/7kT + 1’0 :
The quantity (1 — mc?) in the denominator of (7) isa
crucial parameter in this theory. In the FD case, the Fermi
energy Ex = u — myc®. By analogy, in the MB and BE cases,
we define the Bose energy Ey and the classical energy E- to
beu — myc?. The chemical potential  is different for each of
the distribution functions. It depends on particle concentra-
tion or number, rest energy, and temperature. The corre-
sponding energy parameter reflects this dependence.

(N

IV. EXACT AND APPROXIMATE SOLUTIONS

At this point, we make two exact calculations using (5),
with a limiting value for the FD distribution. This will be
used to provide an internal consistency check on the ap-
proximate FD calculations and as a guide for interpreting
results obtained from the other statistical distributions.

Define W=¢€ — m,c” and consider the FD distribution
function

Fowy =1/ E T L) (8)

in the limit as T—0. For OKW<Ey, f(W) = 1; W has an
upper limit, namely, Eg (0,m,), the Fermi energy at 7= 0.
There is a very simple argument which leads to an exact
expression for Eg (0,m,). Start with the density of states
expression (6), take § = 4, write out the integral for the total
number of particles &, using the Fermi function f(p) =1,

V J‘Pu p2 dp ( 9 )
T# Jo ’

where p,, is the limiting value of the momentum correspond-
ing to Eg(0,m,). Use the relativistic formula (4) and
W = € — myc® to rewrite N as an integral over W,

N=
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V Ex(0,m,) 5
N= WJ; (W + mye”)
X (W24 mgc?)(W2 4+ 2Wmye)2dW.  (10)
This yields
n=N/V=(EL+2E.my*)**/3m#Hc*. (11)
In the limit as my—0,
E. (0,0) = (37%n)3#ic = p,c, (12)

a value which may be used in other expressions for
E (T,my). Using (11), the exact relation for
Ep (0,m,) = (mac* + E2(0,0))Y2 — myc?.
If Ep./myc® <1, it follows from (13) that
Er(0,00) = E%(0,0)/2myc? = (3m2n)**#/2m,.  (14)
If myc?/Ex €1, it follows from (13) that
Ep(0,my) = Ep(0,0)(1 — myc®/Ex (0,0)) . (15)

The physical significance of these four expressions for
the Fermi energy will be discussed later in the paper.

To find the internal energy U = U(0,m,), multiply the
integrand in (9) by € from (4)

_ e
e
The result, expressed in terms of E. = E (0,0), is
U=V/87HE: REL + m2c*)(EL + mic*)'/?
— m¢c® sinh ™' (Ep/myc?)) . (17

Equation (17) is equivalent to the formula for the energy
given by Landau and Lifschitz.® Its form is more convenient
than an alternate expression for U written in terms of
Eg (0,m;), which may be obtained by multiplying the inte-
grand of (10) by € = W+ myc®. The foregoing formula
(17) will be used later in the paper to compare with various
approximate forms for U(T,m,).

(13)

‘Do
f PP +mic®)?dp. (16)
[¢]

V. THE MAXWELL~-BOLTZMANN DISTRIBUTION

Case A [(kT/my,c?)’<1 J: Inthis approximation, the den-
sity of states (5) is

D(x)dx=[2"2(28 + Y V(mkT)*'*/21*#]
X (%2 + S5ax*?/4 + 7a*x%2/32 4+ -+ ),

(18)
where a = (kT /mqc?). The total number of particles
N= eEC/kTJ‘ D(x)e *dx
0
= A(kT)*"2"’*(1 + 1.88a + 0.824°) , (19)

where 4 = (28 + 1) Vm3?/(2w#*)*/%. The integral (19) is
the sum of three gamma functions of the form ['(p + 1)
where p is the exponent of x. Solving for the chemical energy
yields
Ec =kTIn(n/ny (28 + 1))(1 — 1.88a 4+ 2.70a%) ,  (20)
where

ng = (mokT /2m# )32, (21)
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Compare with Egs. (3) and (4) of I, which apply to the
nonrelativistic approximation. Here, E. = u — my® re-
places the chemical potential. It has the standard form, with
two correction terms. The quantum concentration is identi-
cal with the nonrelativistic value in I.

The energy and the heat capacity follow directly. Multi-
ply dN by € = myc* + kTx and integrate,

U= Nmy*(1 + 1.25a — 1.254%) , (22)
C,,:%Nk(l + 2.50a — 3.75a%) . (23)

Certainly the rest energy term in (22) was to be expected.
Thesecond termin (22) and the first term in (23) agree with
Egs. (5) and (6) in 1. The remaining terms are thermal
corrections to the nonrelativistic approximation.

Case B [(m,c’/kT)’<1 ]: Inthis approximation, the den-
sity of states is given by

D(x)dx = [(25 + D V(kT)* /27 %)
X (x% + 2bx + 76 %/8)dx , (24)

where b = mc*/kT.
The total number of particles

N= eEC/ka D(x)e *dx
(4]

= B(kT)%"*"(1 + b+ 0.438h2), (25)

where B = (25 + 1)V /27°#°¢*. Solving for the classical en-
ergy
Ec =kTIn(n/ny(2S + 1))(1 — b + 0.562b %), (26)
where

ng = (kT /#ic)’m=? (27)

is the ultrarelativistic expression for the quantum concentra-
tion. [See Eq. (26) of II.] E. has the expected form plus
both linear and quadratic rest energy correction terms.

To obtain the energy U, multiply the integrand in (25)
by kTx + myc” and integrate,

U= eEC/"Tf (kTx + moc*)D(x)e *dx . (28)
(o]

With the aid of (25), the energy and heat capacity are writ-
ten

U=3NkT(1+1.926%), (29)
dU

C, === =3Nk(1—-192p2). 30)

v =T ( ) (

The ultrarelativistic results’ follow from (29) and (30) in
the limit as m,— 0. Here U and C}, both have a quadratic rest
energy correction term. It is interesting to note that (22), in
the nonrelativistic limit, and (29) in the ultrarelativistic lim-
it, lead to precisely the same familiar equation of state
PV = NkT. This follows because PV =2U /3 and U /3 in
these two limits, respectively. However, neither of these rela-
tionships are consequences of the relativistic expression con-
necting particle energy and momentum.

William A. Barker 1390



VI. THE BOSE~EINSTEIN DISTRIBUTION
The BE integrals have the form

I OCJ“” Sf(x)dx
BE b ex ’

— Eg/kT
e ¥V —1

(31)

where E, = (u — mc?) is the Bose energy. Let z = Eg /kT.
The quantity e ~“ can be shown to be =~ 1 below the Einstein
condensation temperature. The argument parallels the de-
velopment in I [See Egs. (10)-(12)] inclusive. If N, is the
occupation number of the ground state when € = myc” and
x =0, then

No=(e =1, (32)
e~ "=1+1/N,, (33)
Eg= — kT/N,. (34)

Case A [(kT/myc?)?<1 J: The density of states is given by
(18). The total number of bosons in excited energy states

= d.

N, = J D(x)dx .
o e —1

The integral involves the sum of three gamma-Riemann zeta
function products. As in I, this integrates immediately to

N, =2.612Q25 + DHny V(1 + 0.962¢ + 0.3554%) . (36)
This agrees with the nonrelativistic expression (10) in I,

with two thermal correction terms. To find U, multiply the
integrand in (35) by (myc® + kTx),

(35)

U=moc2f (1 4+ ax)D(x)dx . (37)
o e —1
This integrates to
U= N,my* + 1.341(2S + 1) (3NkT /2)
X (1+2.62a + 1.51a%)ny/n . (38)

There is an important distinction between N, and N in Eq.
(38). N, is the number of excited bosons whose p > 0. Here N
is the total number of bosons, excited and condensed. It en-
ters (38) via ¥ = N /n. This distinction can be kept in mind
by realizing that the Einstein condensation is a condensation
in momentum space, but not in coordinate space.

The heat capacity C,, follows by differentiating U with
respect to 7,

Cy, =3.35(25 + 1) (3NKT 72)

X (1 +9.19a—+—6.77a2)nQ/n . (39)

Equations (38) and (39) agree with the nonrelativistic Eqgs.
(14) and (15) in I in the appropriate limit. Both U and C,,
have linear and quadratic correction terms.

Case B [(m,c’/kT)?<I ]: In this approximation, the den-
sity of states is given by (24). The total number of bosons in
excited states

N, = | Pdx (40)
o e —1
This integrates to
N, =1.202(25 + 1)N(1 + 1.31b)ny/n, (41)

where the quantum concentration is the ultrarelativistic val-
ue given in (27). The third term in the density of states
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expression (24) is not carried in this calculation, as it leads
to a divergent term in (40). The energy
U— J‘“’ (kTx + myc*)D(x)dx
0 e*—1

(42)

integrates to
U= N,mc* + 1.082(25 + 1)(BNkT)(1 + 0.741b)ny/n .
(43)

The corresponding heat capacity is

Cy = 13(25 + 1)Nk(1 4 .556b)ny/n . (44)
The correction terms in (43) and (44) are linear terms in
b=myc*/kT.

The Einstein condensation temperature, in the ultrare-
lativistic case, is an additional quantity of interest in BE sta-
tistics. The Einstein temperature T is that temperature for

which the number of bosons N, in excited states equals the
total number of bosons N. Using (41) with m, =0

Ty =2.017(n/28 + 1) /#c/k . (45)
The fraction of particles in excited states is

N,/N=(T/Tg)?, (46)
and the number of particles in the ground state is

No=N—N,=N(1 —(T/T)%. (47)

Consider a photon gas at 7= 2000 K with a concentra-
tion of n = 10n, = 6.74X 10''/cm®. The Einstein conden-
sation temperature from (45) is 3.22x 10® K. The fraction
in excited states is about 0.24. Compare this with the Ein-
stein condensation for liquid helium. The experimental val-
ue for Ty = 2.174 K. Using N,/N = (T /T )*"?, the frac-
tion in excited states at 1 K is about 0.31. Actually, there is
no photon condensation because the number of photons is
not a constant.®

Vil. THE FERMI-DIRAC DISTRIBUTION

Fermi-Dirac integrals, treated relativistically, are rep-
resented by a superposition of integrals of the form

I« J “ xP dx
FD A exe*EF/kT_*_ 1 ’
where Ex =p — myc® and p =0,,,1,3,2,.... With z=E./
kT, (48) has the same structure as Eq. (16) in I. The Blan-
kenbecler® method applies and we can write

™ d° zF+!
I 1+—_—+---> .
FDK( 6 dz° p+1

Case A [(kT/my,c?)’<1 ]: The approximate form for the
density of states in this case is given by (18). The total num-
ber of particles

* D(x)dx

o e T+ 1

Using (49) and solving for N with §' = 4,

N =4A4E )1 + (3Ex/4myc®) + (7/8) (kT /Eg)?),
(51)

where A = Vm3/?/(27#)*'2. In the limit as T—0, my— o,
we find that

(48)

(49)

N= (50)

William A. Barker 1391



E%(0,0)

mec?

E:(0,00) = (37n)3/2m,, (52)

in agreement with (14). Retaining 7" = 0, we can solve for

E%(0,0) (1 3 Eé(0,0))

E.(O,my) =
r (Omo) moc® \

(53)

dmic*
in agreement with an expansion of the exact expression (13).
Finally
Ex(T,my) = Ep (O,m)(1 — (7/12) (kT /E¢)?),  (54)
which is the standard result,'° subject to the new meaning for
E. (0,m,), as given by Eq. (53).
To solve for U multiply d¥ in (50) by € = myc* + kTx,
U J“’ (mgc® + kTx)D(x)dx
o e 74+ 1 )

(55)

The result is

U= Nmy® + () NEg (0,mo)(1 + (57°/12) (kT /E¢)?) .
(56)

The algebra is tedious, but the result is of the expected form,
subject to a new meaning for Ex (0,m,).

It is a simple matter to demonstrate that lim,_, U isan
approximation for U given in (17). To show this, note
that V=N/n, n#c*=E}(0,0)/37°, and E:(0,m,)
~E%(0,0)/2my?. Expand (17) to the second power in
EL (0,0). The values for U(0,m,) from (56) and (17) agree,

U0,my) = Nmyc?(1 + (3EL(0,0)/10mic?)) . (57)
The heat capacity
C, = mNk?k*T /2E: (0,m,) (58)

is of standard form, but there is a correction for Eg (0,m,), as
shown in (53).

Case B [(m,c?/kT)?<1 J: The density of states is given by
(24). The total number of particles
“ D(x)dx _ VE;
b e+ 1 3K
X (1 + myc®/2Eg ) + 7 (kT /Ex )?) .

From (59)
E. (0,my) = Ex (0,0) (1 — myc*/Ex + mic*/2EL)  (60)

in agreement with an expansion of the exact expression (13).
Again from (59) and (60),

E.(T,my) = E- (0,0)(1 — myc*/Ex
+mic*/2EL — (kT /Eg)?) .  (61)

To find U, multiply the integrand in (59) by e =kTx
+ mc? and integrate. After some tedious algebra, the result
is

U(T,my) = 3INE, (0,0)
X(1+4(mic*/EL) + m(kT)*/E}).  (62)

This expression, at T = 0, agrees with an expansion of
the exact formula (17). It is easy to see that the second term
in (17) does not contribute to this order. Write

N= (1 + B3mc®/Eg)

(59)
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0.5(myc*/Eg)* sinh ™' (Eg/myc?)
= —0.5(my*/Eg)*
Xlog[moc’/((E% + mie*)! > + Eg)+1].  (63)

An expansion generates terms O(mc?/Ey )® and smaller.
The heat capacity

C, = (37%/4)Nk (kT /Ex(0,0)) . (64)

This has the same structure as the Case A result [ Eq. (58)].
However, the heat capacity in Case A is larger thanin Case B
because Eg (0,m,) is smaller than Eg (0,0). See Eq. (52).

VIIl. DISCUSSION

A. Three tests distinguish among the 12 statistical
formulations

For the individual who is about to make some calcula-
tions in statistical mechanics, there may appear to be a bewil-
dering array of choices. For each of the three distributions,
MB, BE, and FD, there are four possible expressions for the
density of states: nonrelativistic, relativistic A, relativistic B,
and ultrarelativistic.

The choice is clear once three tests are made.

In the first test, a comparison of kT with mc? distin-
guishes amongst the density of states formulas. If kT /
moc<107%, use the nonrelativistic formula [Eq. (2)]. If
kT /myc®> 107 2and (kT /myc?)?< 1072, use the relativistic
A formula [Eq. (18)]. If myc®/kT>10"% and (m*/
kT)*<1072, use the relativistic B formula [Eq. (24)]. If
moc?/kT <1072, use the ultrarelativistic formula [Eq. (3)].

In the second test, the particle density is compared with
the quantum concentration r,,. This determines whether the
problem is classical or degenerate.

If the first test establishes the density of states to be
either nonrelativistic or relativistic A, then if n<n,

= (mkT /2m#)*/?, the problem is nondegenerate. Use MB

statistics. If n X n,,, the problem is degenerate. Use BE or FD
statistics. On the other hand, if the first test establishes the
density of states to be either relativistic B or ultrarelativistic,
thenifn<n, = (kT /#ic)?/m?, the problemis nondegenerate
and calls for MB statistics. If n % n,,, the problem is degener-
ate, requiring either BE or FD statistics.

In the third test, the particle spin is used to distinguish
bosons from fermions. Let S, = n#i/2, where n =0,1,2,... .
Then for » odd (even), the particle is a fermion (boson).

If tests 1 and 2 establish the problem as degenerate and
either nonrelativistic, relativistic A, relativistic B, or ultra-
relativistic, then n even (odd) requires BE (FD) statistics.

B. The classical, Bose, and Fermi energies

In MB statistics, the leading term for the classical ener-
gy E. has the same form for both the relativistic A and B
regimes [Eqgs. (20) and (26) ]. However, the quantum con-
centration n,, as described in test 2, has two quite different
meanings [Egs. (21) and (27)]. The first (second) is appro-
priate for relativistic A (B).

Suppose that S=1 and that n/ny,<1077 then
E./kT =1In(n/ny)< — 4.6. The classical energy £ will al-
ways be negative, as required by n €n,,. In this situation, MB
statistics are used.
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The Bose energy Ep has a small negative value
~ — kT /N, if the particle number N is conserved. However,
Eg = 0if the particle number is not conserved. The former
value is valid if the actual temperature is less than the Ein-
stein condensation temperature.

The Fermi energy takes several forms. In the case of a
problem which is nonrelativistic or relativisitic A, the lead-
ing term is Eg (0,m,) = (37%n)?*#/2m. However, if the
problem is relativistic B or ultrarelativistic, the leading term
is E; (0,0) = (377%n)'/*#ic. These two expressions differ sub-
stantially in structure and magnitude. Consider, for exam-
ple, conduction electrons of concentration n = 10?%/cm?>.
Then Er (0,m,) = 1.70 €V and E(0,0) = 1.32X10° eV.
All the other contributions to E are due to rest energy and
thermal effects and are less than these leading terms.

C. The third law of thermodynamics

The third law of thermodynamics requires that
lim,_, C, = 0. This law is violated by the MB heat capacity
expressions (23) and (30), as is well known. However, the
BE and FD expressions for C,,, as given in Eqs. (39), (44),
(58), and (64), are in agreement with the third law. In veri-
fying this for BE statistics, note that n, ~ 72 or T'. This
temperature dependence of the quantum concentration
guarantees that the correction terms, as well as the leading
terms, go to zero as 7—0.

IX. CONCLUSION

The methods developed in I are used, in this paper, to
give a systematic discussion of MB, BE, and FD distribu-
tions when the density of states expression is based on the
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exact relativistic energy-momentum relationship. Two ap-
proximations are used. When (k7T /myc?)? <1, the results
are the same as for the nonrelativistic approximation, but
with correction termsin (kT /myc?). When (myc*/kT)* <1,
the results agree with the ultrarelativistic approximation but
with correction terms in myc2/kT. The principal focus of the
paper is on the quantity u — mqc?, where u is the chemical
potential. This is the Fermi energy in FD statistics, and it is
given a comparable definition for BE and MB statistics. As
in I, calculations are made for the chemical potential, inter-
nal energy, and heat capacity for each of the three distribu-
tions. A feature of the paper are two exact solutions. The
relativistic density of states formula is used, without approx-
imation, with the FD distribution function at 7= 0, e<Eg
to obtain exact expressions for the Fermi energy and the
internal energy. When these formulas are expanded in a se-
ries, they agree to the same order with the results obtained
using the series representation in I.

'C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), pp.
86-96; see also C. Kittel and H. Kroemer, Thermal Physics ( Freeman, San
Francisco, 1980), pp. 183-198.

2L. D. Landau and E.M. Lifschitz, Statistical Physics ( Addison-Wesley,
Reading, MA, 1968), pp. 165-167.

3See Ref. 2, pp. 167 and 168.

William A. Barker, J. Math, Phys. 27, 1 (1986).

SWilliam A. Barker, J. Math. Phys. 28, 1385 (1987).

*See Ref. 2, p. 168.

"See C. Kittell, Ref. 1, p. 60.

8See Ref. 1, Kittel and Kroemer, p. 202.

°R. Blankenbecler, Am. J. Phys. 25, 279 (1957).

19Gee Ref, 1, Kittel, p. 94. [Eq. (20.24)].
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A general class of perturbations of the dynamics for thermodynamic quantum systems is
discussed. Without making use of weak asymptotic Abelianess, stability of a state for these
perturbations is shown to lead to the ¢-KMS condition and to the KMS condition in particular
cases. Conversely, #-KMS states satisfy the stability property introduced here.

I. INTRODUCTION

The derivation of equilibrium properties for states of
thermodynamic systems has already been of interest for
some time. It is well known that so-called KMS states may
be obtained from stability for perturbation of the dynamics.
This has been discussed initially by Haag, Kastler, and
Trych-Pohlmeyer, by Kastler and Bratteli, and by Hoek-
man,; for a review cf. Ref. 1, Chap. 5.4.2. However, owing to
the assumed rapid decay of the time correlation functions
these KMS states can only describe pure thermodynamic
phases. A further restriction of the method is that it can be
applied only to states of dynamical systems that are weakly
asymptotically Abelian; viz. fdt w([4,a,B ]) = 0. Here 4,
B denote elements of the C * algebra ll; weE), is a state over
U, and a,caut 1 describes the time evolution.

In this paper we shall discuss a stability property which
leads to states that satisfy the ¢-KMS condition introduced
recently.” The main advantage of the stability criterion put
forward here is that neither are assumptions made on the
decay of the correlation functions nor is the dynamics as-
sumed to act weakly asymptotically Abelian.

Depending on the details of the perturbation for which
stability is imposed, the ¢-KMS states in some cases are
KMS states. For an infinite quantum lattice system the ¢-
KMS condition and KMS condition are equivalent.> Conse-
quently, in this instance either our stability condition leads
to a KMS state or the system does not admit states that are
stable for the particular perturbation. For any finite system
or for continuous quantum systems, however, the only states
that fulfill the stability criterium are ¢-KMS states.

For a finite system the presently proposed stability
property is stronger than the condition imposed by Lebowitz
et al® For thermodynamic systems our conditions are
weaker than those introduced by Kastler® (cf. Ref. 5).

1. A GENERALIZED PERTURBED DYNAMICS

In the Heisenberg picture the equation of motion for the
unperturbed evolution reads

d ,

z—l;a' (A) =ia,(5(A)),
where the derivation § is the infinitesimal generator of the
group of * automorphisms {a, }. A perturbed dynamics can

be considered as the solution of the differential equation

AeD(5)CN, (2.1)
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9 g0a) =i @) +ial [hod ],

cf., e.g., Ref. 6, with A, = h *cll. One may choose the partic-
ular form k, = f (r)h withh = h*ell and f 7 - %, so that
the perturbation becomes localized in time if, e.g., supp fis
compact or f€L, (). The family {4, } can be interpreted as
the action of some external agent on the system. Owing to
the time dependence of A, the mappings {&/} do not form a
group.

A further generalization of the perturbed dynamics is
obtained from the following equation of motion:

4 G4y = (@B + if, (NG (hA) — i fo(DE ().

dt
2.3)

The solution to this equation is the family of mappings @.:
-1 given by

(2.2)

@A) = yia,(A4)), (2.4a)

YiA) = @ (1) A (1) *, (2.4b)

=5 i (as [ 'ge T

B0 =73 [z fods, fo ds, kgl[ﬁ(sk)ask(h)]},
(2.4¢)

with f,eL () and h = h *cll,,. The unperturbed dynamics
a, is assumed to be strongly continuous on a o(11,N)-dense
subalgebra ll,C 1. Here N denotes the set of locally normal
states on Il (cf. Ref. 7). In general, the mappings &@"* and 7/
will not be positivity preserving. The operators ﬁ}'(t) are
easily seen to be unitary. The integrals in (2.4c) exist as
Bochner integrals. We now give some useful properties of
the generalized perturbed dynamics in the following.
Proposition 2.1: For Acll and h = h *ell,,

B =1+ zf ds f;(s)a, (W) i)(s), (2.52)
% 4 (1) = if,(Ha, (h)al(1); (2.5b)
Yid) =4 +i£ds[f1<s)72’(as(h)A)

— £ da, (1))], (2.5¢)
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@) = a,(4) +1 [ a5l fi(s)a (Wa, (4)
(]

—f®)a (Aa,(B)]+ . (2.5d)

The omitted terms in (2.5d) are O(h?).

Proof: By iteration of (2.5a) we obtain (2.4c). The
equivalence of (2.5¢) and (2.5b) then follows from the ini-
tial condition &} (0) = 1. Finally, (2.5¢) and (2.5d) are ob-
tained with the use of (2.4b) and (2.4c) along similar lines
as in the discussion of the cocycle property (cf., e.g., Ref. 1).

We now turn to the introduction of the notion of stabil-
ity for perturbations from the unperturbed dynamics «, as
described by (2.5d). Succintly, one assumes that close to the
original state @€ll* there exists a bounded linear functional
o"ell* that is almost invariant for the perturbed evolution
&". At this point we shall impose some restrictions on the
functions f;.

Definition 2.2: For a pair of functions £, and f, such that

(1) fieL (Z)NC(R);
(2) /A’jeC * (%) and invertible on sp a, i.e.,
£,(1)#0 VYiespa = {1eZ# g (1) #0

Vg: J-dtg(t)a, A4)=0

v AGHO] R

3) ) =AY iff A=0;
[8(A) = sdt e~ *'g(¢) is the Fourier transform] we say that
a state w is ( f},f5)-stable if there exists a bounded linear
functional w**€ll* such that for 4 in a neighborhood of the
origin

lim 0" (y*d) =0 (4); (2.6)
t— + o
! (4) — o’ (4) =o(p); (2.7)
and
lim o**(a,A) = w(a,A), uniformly in ¢ (2.8)

n—0
for all Acll. With the use of (2.5¢) a simple estimate shows
that @ (4) — " (4) = O( ) so that (2.7) does not
seem to be a very severe assumption.

The conditions (2.6) and (2.7) are in fact the same as
the ones introduced by Kastler® and Hoekman® because
there " is a perturbed state which is invariant for the per-
turbed dynamics. In Ref. 5 a perturbed dynamics a” is con-
sidered that is an Abelian group of transformations. As a
consequence, the perturbed state could be explicitly con-
structed, viz. **(4) = M, w(a’*4), where M is an invar-
iant mean over the additive group of the real numbers and ¢ is
a dummy variable.® If, in addition, one has that (11,,a,) is
L,-asymptotically Abelian, then the convergence (2.8) can
be derived.

We shall now proceed with the demonstration that
without loss of generality the perturbed state ©** may be
assumed to be approximately invariant for the perturbed dy-

namics.
Lemma 2.3: Let I be an invariant mean over the addi-
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tive group of the real numbers.® Then the time-averaged per-
turbed state M, " (a,. 4) =Mw*"(4), wheret ' is tobe con-
sidered as a dummy variable, satisfies

lim Mo (a,4) = Mw(a,4), uniformly in ¢ (2.92)

n—0
and

lim [Mw* (@i4) — Ma*"(A)] =0, uniformly in .

" (2.9b)
Proof: Because M is an invariant mean we have®

M| (a,4) — w(a,4)]|

<SU}?) |a)""(a,A) - w(a,A)[ <¢€,
tes

for i < py(€). This establishes the continuity property of the
time averaging. Similarly, with the use of (2.5¢) we obtain
IM[art*(@"4) — w**(4)]]

— [ M[* (@A) — o*(2,4) ]|

<l || @ (4) — a, (D]

<l | el W FIA LA + A0S

so that (2.9b) follows from this estimate.

We shall denote the set of (f,,]g)—stable states by I, ,.
In order to study the consequences of ( ]’1, }”2) stability we
shall derive a condition which involves only the unperturbed
entities w and a, and the functions f}, f>. Herejv”(x) denotes
SU—x).

Proposition 2.4: Let wel , be continuous in the o(U,N)
topology. Then

Jw dtf,(H)w(Aa,B)

=r dt f,(t)wla, (B)4), for A,Bell. (2.10)

Proof: From Lemma 2.3 it follows that without loss of
generality one may assume o*” to be approximately invar-
iant for @, in the sense of (2.9b). For & = h *ell, A€ll we
write

T, - - .
[ ar L (o) = ) - G
T,
With the use of (2.5¢) and (2.6) we find
f dt [ [y (@ (ha _ ,A4))
—hH(Hao (@t a _ (4)h))]
= (i/p) [0 (4) — ™ (4)].
The right-hand side vanishes as ¢ —0 due to (2.7). Because
J€L () the Lebesgue dominated convergence theorem
yields for -0,
f dtfi()w(ha,A) = J dtfr(ola, (A)h),  (*)

for & = h *€ll and 4€ll. Now consider the GNS representa-
tion (§,,,7,,,02,,) associated with the state . Owing to Ka-
plansky’s density theorem 7, (h) = 7, (h)* can be approxi-
mated strongly by a net b em,, (11,) of self-adjoint elements.
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With the help of a three-¢ argument and the polarization
method we can now extend (%) to all A<ll.

Throughout this paper we shall adopt the o(11,N) con-
tinuity which we assumed in the preceding proposition.

INI. INVARIANCE, SEPARATING CHARACTER, AND THE
MODULAR GROUP

From the stability condition (2.11) we now explore the
ensuing properties of a state wel, , . For a state to be stable it
should at least be time invariant; i.e., invariant for «,. To
deal with this problem we formulate the following.

Lemma 3.1: (See Ref. 1.) Let Fbe a bounded function of
two variables and heL, (9? ). If F(h) = fdsdt F(s,t)h(s,t)
vanishes for all A with A( P,q) having compact support not
containing g = 0 and 4 (s,t) is differentiable with respect to z,
with dh(s,t)/dtel (%), then

F(s,t) = G(s),

for some bounded function G. Now we are able to prove the
desired invariance.

Proposition 3.2: If wel |, then o is invariant for the un-
perturbed dynamics «, .

Proof: Let A=1 and B= C, = Jdtg(t)a,(C), then
(2.11) yields

(‘)(Ch, _Chz)=w(Chl_h2)=O, (3.1)

for Celly, geD, and h; = f;*g. From Lemma 3.1 we now con-
clude that w(a, (C)) is a constant for all Cell,,. Invoking the
continuity of @ yields invariance, viz. wo, = w.

To proceed further it is now convenient to write the
stability condition (2.11) in the GNS representation. Let
(h,7,Q2) be the GNS triple associated with wel ,. Since w is
invariant, the group of * automorphisms {e, } can be imple-
mented by a strongly continuous group of unitaries on f). To
this end we must also assume that the correlation functions
t—w(Aa,B) are continuous. Explicitly, we then have
mla,(A4)) = Ua(4A)U_, and U,Q = Q. The stability crite-
rion (2.11) can now be written as

f dt f,(1) (AU, BQ) = fdtﬁ(t) (Q,BU _,AQ),
(3.2)
for A,Bemr(11)".

The infinitesimal generator of U,, i.e., the Liouville op-
erator, will be denoted by L, with the spectral representation
L =J(dEA.

Proposition 3.3: If wel, , then Q is separating.

Proof: from (3.2) we have

(Q, A f,(L)BQ) = (Q,B f,(L)AQ), (3.3)
where]‘(iz =f(—A). Let AQ = 0 then

(Q, A f,(L)BQ) =
so that

(fi(L)A4 *Q,BQ) =0, (3.4)

for all Berr(11)". Because f; is invertible op sp @ = {4 |g(4)
=0Vg: fg(H)a,(d)dt =0V Aclly}D{A|g(1) =0Vg:
Sg()U,AQ dt =0 YAer(Ul,)} =sp L, f, is also invertible
onsp L. Since Q is cyclic it follows now from (3.4) that
A *Q1 = 0 and therefore 4 = 0 by standard arguments.®
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As a consequence we have that the state (£ ,"§)) is a
Tomita state on 7(11)” with the modular automorphism
0,(-) = A" A~", where A is the modular operator.

The preceding results already show great similarity of
the ( f,, f>)-stable states with thermodynamic equilibrium
states. We shall make this connection more explicit in the
following.

Theorem 3.4: If wel,, with fi, such that d(A)

_—f, (i)/fz(/l) satisfies y

(1) g(A)$(A) =1, withd(A) =d(—

(ii) (A1) >0 for Aesp L;
then wek,, i.e., w is a $-KMS state.

Whenever (i) and (ii) are not fulfilled 7,, = &. Con-
versely, if weK, then wel, , for some nonunique f; , such
that f,/f, = ¢.

Proof: Suppose wel, ,, then from (3.3) it follows that

(4 *Qf,(L)BQ) = (B *Q/2(L)AQ).

Now choose A=A, withg = f, then
(f1 (L)4 *QJI(L)BQ)
= (B *Q,fz(L)fl(L)AQ) _
= (F (LB AL /(L) Fi(L)AQ).
Furthermore, we may let B =
¢ = f./f2>00n sp L we have
1AL * = [$(L) " F (LrAQ| (3.5)

Since}"l (L) is invertible we can use the same reasoning as in
Ref. 5 to conclude from (3.5) that the modular operator A
can be written

A * and since we assumed

f.(L)] AW
(L) = [ =, 3.6
¢ f-(L) S (-0

It was shown in Ref. 2 that (3.6) is equivalent with wek,.
The proof of the converse is quite easy. If weK, then

fdtfdb(t)a)(Aa,B) :fdtf(t)co(a,(B)A ), (3.7)
for all 4,Bell, JeD, and ;’é = ¢f, with ¢eC = (#). Now
choose F #0 on sp L and asequence (8,)7_, inD,suchthat
8, —~F and 8, —~F, in S. As ¢ may have an essential singu-
larity at infinity, owing to a theorem of Weierstrass, we can
write ¢ = exp(g). Here g is odd and finite in the finite com-
plex plane. Now choose a function 4 with a Laurent expan-
sion such that ¥ = exp(#)<S and ¢yeS. Then we have for
any GeS that F = GeSand ¢F = (1) GeS. Then it follows
that w satisfies (2.11), with f; = F, and[2 =F, where F, F,
eL,(#)YNC (). Obviously we have f,/f, = ¢; and since
(L) = A? (3.7) can only be satisfied if on sp L ¢ >0 and
#¢ =1 (Ref. 2, Lemma 4).

We conclude with a further remark which can now be
made regarding the set [ ,.

Remark 3.5: From (3.6) it follows that the modular
operator A commutes with the Liouville operator L. Then
one may follow the line of reasoning given in Ref. 10 to estab-
lish that I, , is a lattice in its own order. In general /, , will
not be closed and hence a fortiori not compact. If one as-
sumes in addition the compactness of [, , in the w* topology,
then it follows that 7, , is a Choquet simplex.
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This paper proposes a definition of nonequilibrium entropy appropriate for a bosonic classical
or quantum field, viewed as a collection of oscillators with equations of motion which satisfy a
Liouville theorem (as is guaranteed for a Hamiltonian system). This entropy .S is constructed
explicitly to provide a measure of correlations and, as such, is conserved absolutely in the
absence of couplings between degrees of freedom. This means, e.g., that there can be no
entropy generation for a source-free linear field in flat space, but that S need no longer be
conserved in the presence of couplings induced by nonlinearities, material sources, or a
nontrivial dynamical background space-time. Moreover, through the introduction of a
“subdynamics,” it is proved that, in the presence of such couplings, the entropy will satisfy an
H-theorem inequality, at least in one particular limit. Specifically, if at some initial time ¢#, the
field is free of any correlations, it then follows rigorously that, at time ¢, + A¢, the entropy will
be increasing: dS /dt > 0. Similar arguments demonstrate that this S is the only measure of
“entropy” consistent mathematically with the subdynamics. It is argued that this entropy
possesses an intrinsic physical meaning, this meaning being especially clear in the context of a
quantum theory, where a direct connection exists between entropy generation and particle
creation. Reasonable conjectures regarding the more general time dependence of the entropy,

which parallel closely the conventional wisdom of particle mechanics, lead to an interpretation

of § which corroborates one’s naive intuition as to the behavior of an “entropy.”

I. INTRODUCTION

Conventional wisdom holds that the “entropy” asso-
ciated with some system should be interpreted probabilisti-
cally as a measure of how generic its state really is. A state
which is comparatively random, and which could be realized
in many different ways, has associated with it a large en-
tropy; a state which is somehow improbable, requiring, e.g.,
a special preparation, is considered to have low entropy.
“Equilibrium” is, in this context, interpreted as a state of
“maximum randomness” and “maximum entropy.” The
content of Boltzmann’s' classic A-theorem is that a system
will evolve towards this state of maximum entropy.

There is, however, a well-known difficulty in imple-
menting this general picture. Consider, for example, a collec-
tion of NV classical point particles. Suppose in the usual way
that this system is characterized by an N-particle distribu-
tion function ¢ and that the evolution of this i is governed by
an N-particle Liouville equation which expresses probability
conservation. The standard paradigm then implies (i) that
theentropy S = — Tr u log u, where Tr denotes a trace over
the degrees of freedom of the N particles, and (ii) that the
unique equilibrium corresponds to a state u < exp( — SH),
whereSis aconstant and H the N-particle Hamiltonian. The
problem, however, is that the Liouville equation guarantees
thatdS /dt=0!This.S does not change with time and, conse-
quently, there can be no systematic evolution towards an
equilibrium state of maximum entropy.

This well-known difficulty led historically to the idea of

*) Present address: Department of Physics, Syracuse University, Syracuse,
New York 13244,
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a “coarse-grained averaging,” namely the notion that an H-
theorem does not hold on a truly microscopic level, but, in-
stead, holds only on a quasimacroscopic level for an appro-
priately averaged u. This is, at least superficially, an
extremely attractive idea, but it suffers from two related
drawbacks: (1) it seems difficult to generate a general algo-
rithm to effect the desired coarse graining; and (2) even if
one were to construct a working algorithm, one would be
faced with the additional problem of demonstrating that it is
“canonical” in some natural sense. There would remain,
e.g., the task of either ascertaining the scale on which the
averaging is to be implemented, or, alternatively, of demon-
strating the scale invariance of the averaging.

To the extent that no canonical prescription exists, one
seems forced ultimately to the viewpoint adopted by Jaynes,
namely that “Entropy is a property, not of the physical sys-
tem, but of the particular experiments you or I choose to
perform on it.” ? It is, therefore, natural to ask what it is that
one typically measures when one probes the state of the sys-
tem. And the answer to that would appear quite clear. One
seeks typically to measure the one-particle distribution func-
tion f (i.e., the probability density for finding a particle at a
given point X with momentum p at time 7), or perhaps the
pair or three-body correlation functions. But one does not
even try to measure the detailed correlations amongst the
particles buried in the full N-particle u. One might, there-
fore, argue that, as a practical matter, the physically relevant
notion of coarse graining does not involve a macroscopic
averaging but, instead, entails a loss of information about
higher-order interparticle correlations.

From this point of view, it would seem natural to conjec-
ture that the entropy of the system should be defined in terms
of the reduced one-particle f, rather than the full N-particle
4. And, as such, it would be natural to propose an entropy
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sw=—3 [ dx, dp, fDlog 0, (LD

where

SO =f(x,p; 1) = f I1 9x; dp; 1L (X1 X sPwvst)-
jAi
(1.2)

There are solid reasons to believe that this .S provides a
reasonable notion of entropy. Most obvious is the fact that
this § will in general be time dependent. Thus, for example,
allowing for particle interactions derived from two-body po-
tentials ¥, one concludes that, for a system of /V identical
particles,

‘—2; =NN-1) J-dxi dp; fdxj dp; 2(6, )

avV..
X%-%logﬂi),

i i

(1.3)

where £, (i, j) is the reduced two-particle distribution func-
tion for particles / and j.

Also significant is the fact that this S'is truly canonical,
being constructed in a systematic and unambiguous fashion
from the one-particle £, an object of obvious physical signifi-
cance. Of particular relevance in this regard is the fact that
this f satisfies a “subdynamics,” * decoupled from the high-
er-order correlations. Specifically, by means of projection
operator techniques, one can derive for the evolution of fan
exact, closed (albeit nonlocal and nonlinear) equation
which contains no explicit reference to the higher-order cor-
relations buried in such quantities as £, (, j). It is the nonlin-
earity of this equation which leads to a nonconserved en-
tropy; it is the linearity of the fundamental Liouville
equation that guarantees that Tr z log p is a constant of the
motion.

This S coincides, moreover, with the entropy entering
into the standard H-theorem; and, consequently, one antici-
pates that this S really will increase monotonically at least in
some approximate limit. It is in fact well known that the
exact equation satisfied by freduces to the standard Landau
equation® if one assumes (i) that the interactions are weak
and comparatively short range (dilute gas approximation),
(ii) that initial conditions were specified at a time in the past
long compared with the duration of a typical interaction,
and (iii) that one can neglect the effects of nontrivial initial
conditions and suppose that, at some initial time ¢,
w =1L (D).

The first two of these requirements seem reasonable
physically; and indeed, they can be relaxed, at least in princi-
ple, in the context of a systematic perturbation expansion.
The third requirement needs some further justification. For
“ordinary,” reasonably well behaved interactions, one can
argue convincingly, and in certain cases prove,” that generic
nontrivial initial conditions will in fact decay as time goes by.
The physical content of this statement is that any correla-
tions present at the outset will eventually become irrelevant
compared with the systematically evolving correlations gen-
erated by the subsequent dynamics. For more perverse, long-
range interactions, like Newtonian gravity, this argument is
most likely invalid: numerical simulations suggest that self-
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gravitating systems really do “remember” their initial condi-
tions for a very long time.* For these perverse interactions, a
systematic statistical analysis really requires the ansatz that
no significant initial correlations be present. Whether this is
reasonable is of course exceedingly difficult to say. Such a
viewpoint is, however, if nothing else, consistent with the
speculation that the Universe originated from a state of
“maximum simplicity.” After all, it is only on very large
scales that self-gravity becomes important.

It should also be stressed that, even neglecting “special”
initial conditions, not every physical system of interacting
entities will satisfy an H-theorem for all times. Consider, for
example, a pair of harmonic oscillators with natural frequen-
cies w, and w,, connected by a linear coupling derived from a
pair potential V', = Ax,x,, where A measures the strength of
the interaction. In this simple case, one can solve explicitly
for the evolution of the system in terms of arbitrary initial
conditions; and, for appropriate choices of w,, w,, and 4, it is
easy to see that the motion will be periodic. After some time
7, the system will return to its initial state: there can be no
progression towards equilibrium. This means that, if the en-
tropy increases at one point of time, it must at some other
time decrease.

This does not, however, imply that the entropy (1.1) is
devoid of physical meaning. Even if this.S does not satisfy an
H-theorem, it can provide a useful measure of the degree of
correlations in the system. Thus, e.g., if one supposes that, at
some initial time ¢,, the system was free of correlations, the
interactions between the oscillators will result in an initial
generation of correlations and a concomitant increase in en-
tropy!

This initial entropy increase is in fact a very general
result. Consider a collection of ¥V objects which interact via
arbitrary two- and higher-body forces characterized by a
coupling constant 4. Assume then that, at some initial time
t,, the system was completely free of correlations, so that
p = I (D). It follows that, an instant At later,

ds(ty+ At) _
dt

where |a|?, which is intrinsically positive, reflects the form of
the initial state. A proof of this claim for a specific model
interaction was provided in Ref. 5. A more general proof will
be provided below. The important point to note here is that,
even if an H-theorem does not hold for all times, the entropy
(2.1) can still provide a useful measure of correlations. To
show that S reflects correlations, and to show that S always
increases, are two distinct and separate issues.

To the extent that a system is truly periodic and no sys-
tematic evolution towards a more “random” state is ob-
tained, one might perhaps argue that.§' does not warrant the
appellation entropy. What does, however, appear to be an
empirical fact is that, for realistic complicated systems, cou-
plings between degrees of freedom lead to a progression
towards a more random sort of state.

The object of this paper is to formulate a notion of non-
equilibrium entropy for a classical or quantum field which
parallels as closely as possible the particle entropy described
in this Introduction. This notion of entropy is such that it is
conserved absolutely for a source-free linear field in Min-

A%al?Ar >0, (14)
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kowski space, but assumes a time dependence in the presence
of couplings induced, e.g., by nonlinearities, sources, or a
nontrivial background space-time.

The program of this paper is as follows: Section II
sketches out the basic picture for a classical or quantum field
in Minkowski space, emphasizing in particular (i) the ques-
tion of physical interpretation and (ii) the formal similari-
ties between the classical and quantum theories. Section III
then addresses the additional complications, both concep-
tual and practical, which arise for fields propagating in a
nontrivial dynamical space-time. Section IV introduces the
notion of a subdynamics to show explicitly that the field
entropy S defined in Secs. II and III does in fact provide a
measure of correlations, demonstrating that, in the presence
of couplings between degrees of freedom, an initially uncor-
related state leads necessarily to an initial increase in en-
tropy. Section V turns to the special question of physical
interpretation in the context of a quantum theory, focusing
upon a fundamental connection between changes in the field
entropy and the phenomenon of particle creation. The prin-
cipal conclusion here is that the mechanism which gives rise
to an initial increase in entropy will also cause an initial en-
hancement in the rate of particle creation. Section VI dem-
onstrates that, in a precise and well-defined mathematical
sense, the .S defined in Secs. IT and III is the only measure of
entropy consistent with the notion of subdynamics defined
in Sec. IV. Finally, Sec. VII summarizes the principal re-
sults, speculates upon the more generic time dependence of
S, and concludes by reflecting upon the connection between
the entropy defined here and the “geometric” entropy asso-
ciated, e.g., with the event horizon of a black hole in general
relativity.

It should, perhaps, be noted that, although the analysis
presented here is comparatively abstract, the key ideas were
motivated originally by a desire to understand nonequilibri-
um processes in the early Universe. The sense in which these
ideas are relevant there is considered in a companion paper
by Hu and Kandrup.®

Units are chosen throughout such that Planck’s con-
stant 4 /27 and the speed of light ¢ are equal to unity.

11. NONEQUILIBRIUM ENTROPY IN MINKOWSKI SPACE
A. Classical field theory

As noted already, the object of this paper is to construct
a notion of entropy for a classical or quantum field which
parallels as closely as possible the notion of particle entropy
posited in Sec. I. This implies, in particular, three specific
requirements.

(1) This entropy S must provide a measure of the degree
of correlations in the system. If there are no couplings
between degrees of freedom, so that no correlations can be
generated, S must be conserved.

(2) This S must satisfy an H-theorem inequality, at least
in some appropriate limit. One demands that an “initially
uncorrelated” system leads to an initial increase in S; and
one anticipates (or at least hopes) that S will increase mono-
tonically for all times, this corresponding to an approach
towards equilibrium.
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(3) This.S must in some sense be physically meaningful.

The key idea underlying the analysis is that the field
entropy S should be constructed from an appropriate analog
of the one-particle distribution functions (/). One knows
that, at least in flat space, a classical field theory is equivalent
mathematically to an infinite set of oscillators. The statisti-
cal description of such a field takes, therefore, as its funda-
mental object a many-oscillator distribution function z, the
evolution of which is governed by a Liouville equation which
expresses conservation of probability. Given this fundamen-
tal u, one can then define reduced distribution functions
g(q4,7m4,t)=g(A) in the obvious way for each oscillator by
integrating over the “position” and “momentum,” g, and
g, of each of the remaining oscillators:

g(A)=g(q7p.0) =f [1 425 dms n({gcsmcin).
B#A
(2.1)

Given these one-oscillator g(4)’s, one is then instructed to
define an entropy

st = =3 [ dg, dm, glogga). (22)
A

Because the field is equivalent to an infinite set of oscillators,
the sum in this expression is an infinite one, so that the en-
tropy so defined might well prove infinite, at least formally.
This, however, is not especially relevant for the present dis-
cussion. What is relevant is whether this S can be shown to
increase in the presence of evolving correlations.

The first obvious point to note is that, although, in the
absence of material sources, Tr ¢ log it is a constant of the
motion, the entropy of Eq. (2.2) will in fact be time depen-
dent if there exist couplings between degrees of freedom. It
follows trivially that, for a linear free field, dS /dt=0, but, in
the presence of nonlinearities such as those arising in a A$*
field theory, one concludes instead that, in general, dS /dt
s0.% This is no different from the statement that a system of
N noninteracting particles must conserve its entropy, but
that, once one allows for particle interactions, the entropy
will in fact change with time.

One can, moreover, demonstrate that, in the presence of
such ccuplings induced by nonlinearities, S will satisfy for
short times the same sort of H-theorem as did the particle
entropy of Sec. I. Specifically, if one supposes that, at some
initial time ¢,, the system was free of correlations, so that
pn =1I1,g(A4}, it follows rigorously that dS(¢, + At)/dt > 0.
The proof of this statement, provided in Sec. IV, is the same
for particle and field theories. The crucial point is simply
that, for early times, dS /dt will be quadratic in the interac-
tion Liouvillian which generates the evolving correlations!
For a system of particles interacting via two-body forces, the
interaction Liouvillian for a pair of particles / and j takes the
form

L

Ly=4 ax; dp; '
where A is a coupling constant. For a simple A$° field the-
ory, the analogous object is

(2.3)
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J
f,lw =Agpqq4_p— (2.4)
o,
In each case, one concludes that, to first order in At,
—g’~S'(tOTjA-Q=/12|a[2At>O, 2.5)

where |a|*> 0 depends upon the form of the initial state.

In the presence of material sources (e.g., when consider-
ing a collection of charged particles interacting via an elec-
tromagnetic field) the analysis becomes more complicated
mathematically, but the physical picture remains un-
changed. The fundamental object for the composite system
of particles and fields is now an enlarged distribution func-
tion v depending upon both particle and field variables
which satisfies a Liouville equation expressing probability
conservation in an enlarged particle-plus-field phase space.
It follows trivially from the linearity of the Liouville equa-
tion that Tr v log v is conserved absolutely, but that the total
entropy

S= _ Zfdxi dp; f(i)log (i)

—ZquA dmr, g(4A)logg(4) (2.6)
A

will in general exhibit a nontrivial time dependence. Local
equations for df(i)/dt or dg(A)/dt analogous to Eq. (1.3)
now involve the particle-oscillator correlation function

h(i,A) = f 1 2x; 4, JBI;IA dgg dmy

i
X V(X sP1sereoXn Py G Bit). 2.7)

And the couplings buried in this 4 (i,4) induce a nontrivial
dS /dt just as surely as do the couplings associated with the
direct particle—particle interactions of ordinary Newtonian
dynamics or the nonlinearities discussed above.

Since the physical picture here is not different from that
arising in a nonlinear field theory, but significantly messier
mathematically, this situation will not be considered in any
detail in this paper. One may, however, note that it is com-
pletely straightforward to use the techniques developed in
Ref. 7 to parallel the discussion here and obtain a theory of
nonequilibrium entropy for an interacting system of parti-
cles and fields.

It remains here to at least address the issue of whether
the field entropy (2.2) is physically meaningful. After all,
the oscillators that one is considering are only mathematical
constructs, and one would not expect to measure any g(4) in
a realistic experiment. One reason to believe that the g(4)’s,
and hence S, are meaningful is that the g(4)’s serve at least
to define physically measurable average values. Thus, for
example, if one considers a scalar field

<I>(x,t)52 g, ()exp( — ikx), (2.8)
k

it follows immediately that the statistical average value
(P(x,0)) = ¥ (g, (1))exp( — ikex), (2.9)
k

where

1401 J. Math. Phys., Vol. 28, No. 6, June 1987

(gx (1)) = Trug, () zfko dm, g(k)gq, (1). (2.10)

This is completely analogous to the situation in a particle
theory. Here, for example, the true mass density

pxn) =3 mép[x—x0], (2.11)
whereas the avlerage density
p(x,1) =3 mn;(x,1)), (2.12)
with '
(n;(x,)) =Trudp(x —x;)
=jdx,- dp; f()6p [x —x,(D)] . (2.13)

One should note, moreover, that if an H-theorem holds,
S can provide a useful diagnostic for the evolution of phys-
ical observables. For a free, linear field, each mode will of
course evolve independently, so that the entropy, which is
after all conserved, will not be of particular significance.
Thus a scalar field satisfying the Klein—-Gordon equation

— 3P+ ADP=0 (2.14)
leads trivially to the averaged equation
—3,{®P) + A(®) =0. (2.15)

If, however, there exist correlations generated by couplings
between the modes, one acquires an effective “source” Z,
and the evolving S can provide useful information about the
effects of this 3. Thus, for example, the true nonlinear equa-
tion

— 3,2+ AP+ AP’ =0 (2.16)
leads to a statistically averaged equation
— 9, 4(®) + A(®) + A (P)* =3, (2.17)

where the source = involves couplings between each mode 4
and the modes Band 4 — B.°

B. Quantum field theory

The discussion hitherto has focused exclusively upon a
classical field theory. It is, however, completely straightfor-
ward to formulate a corresponding quantum theory for a
bosonic system with integral spin, provided only that the
fundamental dynamics can be cast into a Hamiltonian form®
(the generalization to a spin-4 fermionic system is currently
under investigation®). All that one need do is implement the
standard formalism of canonical quantization, assuming
that the Poisson bracket is to be replaced by a commutator.
Indeed, one could equally well construct a quantum statisti-
cal theory for a non-Hamiltonian system provided only that
one is willing to accept some (perhaps quite ad hoc) quanti-
zation prescription.

It is, however, important to emphasize that the interpre-
tation of the field entropy (2.2) as providing a measure of
correlations does rely upon one important feature guaran-
teed for Hamiltonian systems which will not, however, hold
in general, namely the notion of conservation of phase ex-
pressed by the Liouville theorem. Consider, e.g., a collection
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of N identical classical, noninteracting particles which feel
the influence of an external force F, which depends upon the
coordinates, momenta, and time in a perverse fashion which
cannot be formulated in a Hamiltonian framework. In this
case, one still has a well-defined notion of probability conser-
vation in an appropriate 6/N-dimensional (x,p) space, and it
follows at once that the N-particle 4 will satisfy the relation

u N3 ( dx;*® ) yNo4 ( dp', )
St + -\ =0,
at igl ax,° dt # =1 ap', dt g

(2.18)

so that, since the particles are noninteracting,
) “ ad
¥ rY,
dt mox* dp,

It does not, however, follow in the usual way that the Boltz-
mann entropy will be conserved! Rather, one calculates ex-
plicitly that

(2.19)

(F,f)=0.

JF,
A1 +logf),
ap

a
which certainly need not vanish. In the absence of conserva-
tion of phase, which would be guaranteed if

ad (dxa)+i(dpa)zo,
ox® \ dt dp, \ dt

even a noninteracting theory entails a time-dependent en-
tropy.

It may also be emphasized that this is not a purely tech-
nical observation with no physical relevance. A similar prob-
lem arises in general relativity if one wishes to reexpress geo-
desic flows in a space-time with metric gz in terms of a
slightly different metricg,; (as would, e.g., be required for a
phase space description of linearized perturbations away
from some static background). In this case, the prescription
of Israel and Kandrup'® leads to a four-force

F,=8T. A p'p/m,
where A, is the spatial projection tensor constructed from
Po andg,;,and SI’iV is the difference between the Christof-
fel symbols associated with g/,; and g,,5. It then follows that
dF,/dp, #0, and this implies that the entropy flux s*, as
defined, e.g., by Israel,'' will not be divergence-free.

In any case, at least for Hamiltonian systems, the only
really new feature of a quantum statistical description is that
the distribution function g must be reinterpreted as a density
matrix with an evolution governed by the usual quantum
Liouville equation. Reduced distribution functions, such as
g(A4), realized as reduced density matrices, are obtained by
partial traces over the degrees of freedom of some subset of
the oscillators. The field entropy S is then defined in terms of
the reduced g(4)’s by the obvious prescription

E=Nfalx dp (2.20)
dt

(2.21)

S= — 3 Tr, g(4)logg(4), (2.22)
A

where Tr, denotes a trace over the degrees of freedom of the
A th oscillator, realized in an arbitrary (e.g., coordinate or
momentum) representation.

Asillustrated in Sec. IV, one can, either classically or in
the framework of a quantum description, formulate a sub-
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dynamics for the evolution of the g(4)’s which contains no
explicit reference to the higher-order correlations. And, by
using this subdynamics, one can again prove an initial en-
tropy increase (2.5) for a system which evidences no initial
correlations. There remains the well-known problem of ob-
taining a true probabilistic interpretation of the quantum g
or g(A)’s, but this has no immediate bearing upon the inter-
pretation of .S as a measure of correlations.

Given the quantum or classical equations of motion,
and the existence of a density matrix or distribution function
4 which satisfies a linear Liouville equation, the quantum
and classical statistical theories are essentially identical!

The quantum theory does, however, admit to one en-
richment of interpretation. Specifically, in the context of a
quantum description, it is conventional to interpret a change
in the field as representing the creation or destruction of
particles. Thus, in particular, if the 4 th oscillator is charac-
terized by a natural frequency w4, it is customary to inter-
pret the statistical average

(Ny)= %WA2+%Q)A2QA2>/(UA -1 (2.23)

as representing the “number of quanta in the 4 th mode.”
One might, therefore, seek to establish a connection between
changes in the entropy (2.22) and changes in the average
(N ,). The gratifying fact, discussed in great detail by Hu
and Kandrup,® and considered briefly in Sec. V, is that such
a connection does exist. Evolving correlations lead not only
to an increase in the entropy, but to an increase in particle
number.

That this is the case is illustrated by the following state-
ment, a proof of which is presented in Sec. V. Consider a
source-free nonlinear field theory in flat space realized as a
collection of oscillators, and suppose that the (N, ) of Eq.
(2.23) represents the number of particles in the 4 th mode.
Write the total density matrix & in the form

w=1]8A) + . (2.24)

A
where u,; =u — I1,g(A4) reflects the “piece” of the total u
which contains information about correlations amongst the
degrees of freedom. Suppose then that, at some initial time #,,
4, vanishes identically. It follows rigorously that, at time
t, + At, the contribution to d (N, )/dt which involves the
generated u, (¢, + Ar) is intrinsically positive.

lll. NONEQUILIBRIUM ENTROPY IN CURVED SPACE-
TIMES

A. Conceptual issues

The further generalization of this basic picture to a
quantum field theory in a fixed curved background space-
time is again comparatively straightforward, at least formal-
ly, provided only that one can implement a preferred 3 + 1
splitting into space and time, and that one specifies a pre-
ferred set of spatial functions at each instant of time to gener-
alize the standard decomposition into plane waves. Provided
that the space-time is not too perverse, the Cauchy problem
will be well defined, and, given a consistent notion of dynam-
ics, a statistical description should be possible. The only new
significant technical complications arise from the fact (i)
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that, in general, one cannot expand in spatial plane waves,
and (ii) that, in a dynamical space-time, the three-Hamilto-
nian H derived from the fundamental action will manifest an
explicit time dependence.

The fact that H is time dependent does not, in itself,
generate any serious conceptual or practical problem.!? A
time-dependent H most likely precludes the possibility of an
equilibrium, '’ but a nonequilibrium statistical description is
still quite possible. At a conceptual level, field theory in a
classical time-dependent gravitational field is not very differ-
ent, in many respects, from quantum electrodynamics in a
time-dependent, externally imposed, classical electromag-
netic field.

Strictly speaking, the introduction of a specific 3 + 1
splitting, or, equivalently, the specification of a family of
preferred observers, arises already in Minkowski space.
Thus ordinary quantum field theory is usually formulated
from the point of view of inertial observers; and it is well
known that, even for the simplest case of a source-free linear
field theory, an accelerated observer will interpret the phys-
ics very differently. Thus, for example, the state which, to an
inertial observer, corresponds to a true vacuum will, to a
uniformly accelerated observer, correspond instead to a
thermal state with a temperature proportional to its accel-
eration. '

One might, therefore, conjecture that in curved, as in
flat, space one ought simply to restrict attention to freely
falling observers. This, however, does not suffice to solve the
problem. The symmetries of Minkowski space imply that
any inertial observer will see “space” as homogeneous and
isotropic, free of event horizons and other global complica-
tions, so that there is a natural decomposition of any field
into plane waves exp( — /k-x). In curved spaces, however,
there is in general no obvious analog of these plane waves,
and two different freely falling observers might find it con-
venient to expand in two very different sets of “‘spatial” func-
tions.

Given that the natural spatial functions are no longer
necessarily plane waves, it is not especially convenient to
introduce the concept of a Wigner function except in a type
of “quasilocal” approximation. Indeed, the conventional
noncovariant construction of such Wigner functions by
means of the Weyl prescription exploits, in a deep and funda-
mental way, the space translational symmetry of Minkowski
space.'* And, similarly, the covariant Wigner functions of
flat space exploit the time translational symmetry as well.'®

This does not, however, imply that Wigner functions are
totally useless in curved space-times. By assuming that the
space-time is comparatively smooth, i.e., that the gravita-
tional “field” does not change too quickly in space and time,
one can use a Riemann normal coordinate construction to
obtain a notion of the Wigner function which does provide
useful insights into the overall dynamics. Thus, for example,
one can show that a free scalar field may be characterized by
a Wigner function f3, (x%p,) which, in a first approxima-
tion, satisfies the “collisionless Boltzmann” equation'¢

dfw af af
—=p° =0, 3.1
dT p a o ayp /lp‘u a ( )
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the same equation which would be satisfied by a collection of
noninteracting classical point masses. This is a very intuitive
sort of relation, implying simply that f3,, is conserved under
Lie transport along the classical geodesics
X _p and e _ =T p0"
dr
The important point to observe, however, is that, whereas
this equation is exact for classical point masses, it is only an
approximation for the quantum field. A more careful analy-

(3.2)

sis shows that'®
df,
—==Clfu], (3.3)
dar

where C [f,,,] , which can be calculated perturbatively, in-
volves the Riemann curvature tensor and derivatives
thereof.

This is qualitatively similar to what happens to a
charged particle in flat space. Here, classically, the one-par-
ticle f(x“p,, ) will satisfy exactly the equation

af K/ a 3f

dr =7 ox® e =0
where e is the charge and F_; the Maxwell tensor. However,
the Wigner function f},, (x%p,, ) appropriate for a Dirac field
will instead satisfy an equation of the form

Yo <111,

dr
where € [ fw] involves the derivative V,F,,, . In each case,
one acquires corrections proportional to the “tidal forces”
acting between nearby points which may be interpreted as
reflecting the effects of ““virtual particles.”

For better or ill, the basic point of view adopted in this
paper circumvents completely the notion of the Wigner
function by working directly with the density matrix 4. One
advantage therein is the fact that one has not built into the
basic formalism any underlying assumptions that reflect the
special symmetries of flat space. The density matrix i has a
natural meaning in and of itself in terms of the 3 + 1 splitting
and an arbitrary choice of spatial functions.

Another related feature of this description is that it is
intrinsically nonlocal. The g(4)’s are defined in an abstract
(g,7) space which has no direct connection with the space-
time manifold or the associated cotangent bundle. This
means that there is no natural sense in which some piece of
the total entropy .S can be associated with some piece of the
space-time. The g(4)’s are dependent upon the choice of
spatial functions which contain important information
about the global properties of the space-time. As will be dis-
cussed in Sec. VII, this seems a desirable feature if one wishes
to establish a connection between the ideas presented here
and the geometric entropy associated, €.g., with a black hole
in a static space-time. Here, following Bekenstein and
Hawking,'” one is wont to associate with the space-time an
entropy proportional to the area of the event horizon, but it
is clear that the existence of such an event horizon is manifest
only in a global description of the physics.

This nonlocality does, however, have one perhaps unde-
sirable implication, namely that it would seem difficult, if

(3.4)

(3.5)
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not impossible, to construct a natural covariant generaliza-
tion. The situation s, e.g., very different in relativistic kinetic
theory.'? There one is wont to associate with the distribution
of matter in the space-time an entropy flux s#(x%), a vector
field defined in the space-time manifold. The content of an
H-theorem is then encapsulated in the covariant statement
that the covariant divergence of s* is intrinsically non-nega-
tive: V,,s#>0. Only by breaking manifest covariance and in-
tegrating over some arbitrary spacelike hypersurface does
one reach the noncovariant (but observer-independent!)
conclusion that dS /dt>0.

In the absence of a covariant theory, it is not at all clear
that the monotonic increase of the field entropy (2.22) is a
statement with which all observers would agree. Indeed, one
is confronted with two even more fundamental questions:
(1) Will all observers agree that correlations do, or do not,
exist between degrees of freedom for the field?; and (2) will
they even agree whether couplings exist between these de-
grees of freedom? These, however, are issues which arise
already in ordinary quantum field theory in curved space-
time, and, especially, in analyses of particle creation, so that
it is probably fair to say: In this regard, at least, the notion of
entropy presented here is as reasonable—or unreasonable—
as the standard discussions of particle creation.

In any case, to recapitulate: If one is willing to imple-
ment a preferred 3 + 1 splitting and a preferred decomposi-
tion into spatial functions, the formal structure of the statis-
tical description is not very different from that arising in
Minkowski space. What is different are the new sorts of
physical implications induced by a nontrivial dynamical
background space-time.

B. Three examples
1. A static space-time

In this case, there exists a natural 3 + 1 splitting, ¢ being
the coordinate associated with the time translational invar-
iance. The metric can then be written in the form

ds’ =g,.dx" dx
=gtr (dt)z +gab dxa dxb (arb = 1,2’3)) (36)

where the metric functions g,, and g,, depend only upon the
spatial coordinates x°. As a simple illustration, consider the
minimally coupled massive Klein—Gordon field satisfying

V, Vid — m?® =0, (3.7)

where V,, denotes a covariant derivative. For the metric of
Eq. (3.6), P satisfies the equation

62(1) —1/2 (9 1/2ab a 2
"+ (— —( = — & - m*P =0,
P (-9 8x”( g) g pws
(3.8)

and, consequently, it is natural to expand in terms of the
eigenfunctions of the operator

4

_ _ d a
A=( — " l[ _ ) 1/2 _ 1/2_ab _ 2]’
(=g |~ T (—p g L
(3.9)

the natural generalization of the flat space Laplacian. One
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discovers thereby that the modes effectively decouple, each
g, satisfying a distinct equation; and, consequently, it fol-
lows that the entropy is conserved. For a source-free linear
field in a static space-time, dS /dt=0.

This result manifests an obvious connection with the
phenomenon of particle creation, it being well known that, in
the absence of perverse global effects like event horizons, a
source-free linear field in a static space-time admits no parti-
cle creation.'® If, however, one allows for nonlinearities in
the basic field equation, as would be induced, e.g., by a A®”?
coupling, and if, as would seem natural, one still expands in
terms of the eigenfunctions of A, the ¢,’s will be coupled
with one another. And this coupling guarantees that dS /dt
will no longer be conserved. Correlations will evolve and
these will lead to changes in the entropy. This change in S is
again related to particle creation. As will be shown in Sec. V,
if the system is free of correlation at some initial time ¢,, the
evolving correlations induced by the dynamics will lead both
to an initial increase in entropy and to an enhancement in the
rate of particle creation.

2. A conformally static space-time

A net overall expansion or contraction has comparative-
ly little effect upon the evolution of the entropy. It is natural
now to write the metric in the form

ds®> = Q*(1)[8, (dt)> + g, dx°dx"] , (3.10)
which differs from Eq. (3.6) only by the presence of the
conformal factor €2(¢). And, with such a metric, it is again
natural to expand the Klein—~Gordon field (3.7) in terms of
the eigenfunctions of the A of Eq. (3.9). The equation satis-
fied by each g, now becomes more complicated, ' but, nev-
ertheless, one discovers thereby that, in the absence of non-
linearities, the modes remain decoupled so that dS /dr=0. If,
alternatively, one allows for nonlinearities, one again in-
duces couplings between the modes which lead to a noncon-
served entropy and a simple H-theorem inequality.

For the case of a conformally static space-time, the con-
nection between entropy generation and particle creation be-
comes more subtle, it being well known that even a source-
free linear field theory can lead to the creation of particles.
The point to observe, however, is that particle creation can
be triggered by two quite distinct mechanisms.

(1) The fact that the space-time is dynamic leads to a
mixing of positive and negative frequency states, and hence a
change in the number of particles in any given mode.? This
may be interpreted as a manifestation of the type of “para-
metric amplification” well known in quantum optics.®

(2) Couplings between modes will lead to the creation
or destruction of particles whether or not the space-time is
dynamic.

The entropy S defined in this paper says absolutely
nothing about the effects of “parametric amplification.” The
particle creation associated with “mode-mode coupling”
does, however, correspond to an increase in the entropy. If
one starts with an initially uncorrelated state at some time z,),
the generated correlations reflected in the ¢, of Eq. (2.24)
necessarily induce a net creation of particles at time ¢, + Ar.
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3. A Mixmaster Universe (Ref. 21)

These models correspond to a class of cosmological so-
lutions to the Einstein equation which admit a foliation into
a family of spacelike hypersurfaces, each of which is homo-
geneous but characterized by a nontrivial and dynamic spa-
tial curvature. The existence of the foliation leads to a natu-
ral 3 + 1 splitting, and the theory of harmonic analysis leads
to a natural selection of spatial eigenfunctions in terms of
which to expand, so that the choice of mode decomposition
is very nearly canonical.

The crucial new effect in such a universe is the fact that
even a linear field theory leads to a collection of coupled
oscillators! The ordinary flat space equations

dZ
'-&+G)A2QA =0, a}AzzkA2+m2’

dt?

for a Klein~Gordon field are now replaced by more compli-
cated equations®

(3.11)

dqu dgy
S
az T & 1Py

where b,, and ¢, are time-dependent coefficients which
reflect the effects of the dynamical curvature. For the special
case of a conformally static Friedmann Universe, the matri-
ces b, and ¢ ., are diagonal and the modes decouple,'® but,
in general, one infers a linear coupling between the modes
which induces a time dependent S(¢). Formally, this may be
understood by observing that, in the presence of nontrivial
dynamics, the appropriate choice of spatial eigenfunctions
will in fact exhibit a parametric time dependence.

This illustrates the important fact that, in a realistic dy-
namical space-time, even the simplest source-free linear field
theory can lead to a nontrivial generation of entropy. The
notion of entropy becomes, if anything, even more important
in a dynamical space-time manifold.

(3.12)

+ Z cap9s =0,
]

IV. THE DERIVATION OF A SUBDYNAMICS AND AN H-
THEOREM INEQUALITY

A. The derivation of a subdynamics (Ref. 23)

The object of this section is to derive an exact closed
equation for the evolution of S(¢) involving only the reduced
one-oscillator g(4)’s, and to use that exact equation to prove
a short time H-theorem for a state evidencing no initial cor-
relations. Most of the work entails the construction of a sub-
dynamics for the g(4)’s and a derivation of an exact equa-
tion for their evolution which involves no explicit reference
to the higher-order correlations. Once such an equation has
been obtained, it is straightforward to evaluate dS /dt, and it
is completely trivial to show that an initially uncorrelated
state leads to an initial entropy generation.

The starting point for the analysis is a collection of “ob-
jects” that interact in a fashion described by the classical
equations of motion

dq,

il (gamait) + £, {gpmsit)

and
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dm,

dr =%Ya (qAﬂTA;t) + 14 ({qg,ﬂg};t), A=123,..,

(4.1

where a, y, £, and 7 are arbitrary time-dependent functions
of the ¢’s and 7’s, required only to satisfy the conditions

Z(aa,, L ):0
T\ dq, ar,
and
964 M4 )
zA: ( g, O, (4.2)

These equations could have been derived from a Hamilto-
nian—as would be expected for most realistic systems (re-
call, however, the caveat in Sec. II B!)—but that is by no
means necessary. The conditions (4.2) ensure an analog of
the standard Liouville theorem, i.e., conservation of phase,
so that the fundamental Liouville equation is truly linear.
The construction of a subdynamics per se does not require
the imposition of these conditions, but, if they are not im-
posed, one cannot infer a one-to-one correspondence
between changes in the entropy (2.22) and the evolution of
correlations in the system.

Note also that the equations of motion (4.1) are signifi-
cantly more general than one might reasonably expect for
any realistic field theory. This generality should, however,
serve to emphasize that the proof presented here is of very
broad generality, including as a special case a collection of ¥
point masses interacting via two-body forces.

The fundamental object for the statistical description of
such a classical system is a many-object distribution function
1 defined in an infinite-dimensional phase space. The details
of this phase space are not particularly relevant here; and, as
discussed by Kandrup,'® one can assume simply that it is
constructed in the obvious way as the direct product of an
infinite number of two-dimensional, flat, one-object phase
spaces. The only important point is that there exist a notion
of probability conservation, so that

£ (%) 3(5)

-+ —p =0.

ot ; dt ~ ; dt H
Given this expression of conservation of probability, it fol-

lows immediately from Egs. (4.1) and (4.2) that the evolu-
tion of u is governed by the linear Liouville equation

(4.3)

du du u
at_+;(aA +£&4) 34, +; (Ve +714) o,
=% L ru=on (4.4)
at

It is useful to view this L as a sum of free and interaction
Liouvillians, denoted, respectively, L °and L,

a

Losga,; P +;7/A aiA EEA:LOA (4.5)
and
LIEZfA d + > 14 J EZLIA. (4.6)
A Sq,, A 57)’,, A

The obvious point is that it is the L/, ’s which induce evolv-
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ing correlations amongst the ¢,,’s. If L/, =0 for all the 4 ’s,
the system is noninteracting and dS /dt=0.

Two important identities should be noted.

(1) Let Tr, denote a trace over the degrees of freedom
of the A th object, i.e., an integration {dQ, dm,. It then fol-
lows trivially that the operators L°, and L', are antisym-

metric in the sense that, for any two functions # and y,

TryLl®x = —TryL%y
and (4.7)
TryL'x = —TryL'y.
This implies, in particular, that
"l;rLOA)(EOE"I;rLIA/y. (4.8)
(2) Similarly, it follows that, for any function ¢ of the
g(4)’s,
Loylg)] =2

dg(A4)
and (4.9)

L OAg(A)

L7, 9lg)] = d;’:’;) L',g(4).

The operators L°, and L', satisfy the Leibnitz rule. It is
this identity which would fail in the absence of conservation
of phase.

The generalization to a quantum description introduces
no serious mathematical complications. If the equations of
motion (4.1) derive from a Hamiltonian, one can simply
implement the standard prescription of canonical quantiza-
tion. In this event, the classical Liouvillian L is nothing other
than the Poisson bracket {H,...}, and the corresponding
quantum L is a commutator [H,...] _. If a Hamiltonian H
does not exist, one requires some other rule to generate the
quantum analog of the equations of motion. In either case,
the distribution function g is simply reinterpreted as a den-
sity matrix and the classical equation (4.4) as a quantum
Liouville equation

/22 +Lu=0,

at
where L is an abstract operator. The only important require-
ments are (i) that L remain linear, (ii) that L still admit a
decomposition into linear contributions L°, and L’,, and
(iii) that the quantum L °, and L/ still satisfy the identities
(4.7) and (4.9), where Tr, is interpreted now as an abstract
trace. These requirements are, e.g., guaranteed in the frame-
work of canonical quantization. The analysis henceforth in
this section will be formulated abstractly in a fashion appli-
cable to either a classical or a quantum description.

The idea underlying a subdynamics is that one can view
the total distribution function or density matrix u as being a
sum of “relevant” and “irrelevant” contributions, . and
My, and that one can extract from the full Liouville equation
an exact equation for the evolution of £ which contains no
explicit reference to u,;. The desired entropy S(¢) is to be

(4.10)
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constructed in terms of the reduced one-object g(4)’s de-
fined by the prescription

gld)= H ”l;r,u,

B A

(4.11)

and, consequently, it is natural to introduce the decomposi-
tion (2.24), setting

=R+
where
ur=][&4). (4.12)
A

The object now is to implement this decomposition in a
canonical fashion by means of projection operators.?* Spe-
cifically, what is required is a linear operator P(z) defined to
satisfy the three requirements

P(2)u(t) = ug (1), (4.13)
P(t,)P(t)) = P(t,) for t,>1, (4.14)
and
a
[P(t), —],u(t) =0. (4.15)
at

The first of these ensures that P projects out the desired .
The second implies that P is in fact idempotent. The third
guarantees that the operations of projection and time evolu-
tion commute, at least when restricted to the fundamental
w(1) 25

Given such a P, it is straightforward to obtain the de-
sired closed equation for 5 . By acting upon the fundamen-
tal Liouville equation with the operators Pand (1 — P), one
is led to the coupled system

g

5 +PLuy = — PLyu, (4.16)
and

I, _

E» + (1 =P)Lu;, = — (1 —P)Lu,. (4.17)

It is then trivial to write down a formal solution to Egq.
(4.17), yielding u, (¢) in terms of the retarded uy (¢ — 7);
and, by substituting that solution back into Eq. (4.16), one
obtains the desired closed equation for i . Thus, in terms of
an initial condition y, (#,), one concludes that

g t
”—g()~+P<r)L(szm
= —POL(D TG (t,t5)p, (1)
+f A POL(D Y (tf — 1)
0

X[1—Plt—7)IL(t — gt —7),

where

(4.18)

G (tyt)) = Texp{ —fzdr[l —P(T)]L(T)} (4.19)

and T denotes a time ordering operator.

By integrating over the degrees of freedom of all but one
of the objects in the system, one then obtains equations for
each dg(A4) /0t in terms of g(4) and the remaining g(B)’s.
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And, given these equations, it is straightforward to evaluate
dS /dt. Alternatively, one could evaluate that quantity di-
rectly by observing that the field entropy (2.22) can also be
written in the form

(4.20)

where Tr denotes a trace over all the degrees of freedom. It
remains, however, to prove that the desired P actually exists
and to consider in greater detail its action on such quantities
of interest as Lu . These issues could be addressed at purely
formal level by endowing P with additional properties and
then constructing a rigorous existence proof.®

It is, however, instructive instead to proceed construc-
tively by exhibiting a specific P that satisfies Eqs. (4.13)—
(4.15) and then evaluating directly its effects upon the rel-
evant quantities. One convenient choice, considered in the
past,” is obtained by generalizing the approach of Willis
and Picard? for a system of ¥ interacting point masses. Spe-
cifically, one is instructed to view the infinite collection of
objects as the N — oo limit of a finite system, and then define

§= —Trug log s,

N

P(t) = lim Z H g(B) "l;r

Now S5 844

N
— lim (N—1) H g(B)Tr. (4.21)
B=1 B

N—w
It is simple to verify that this P satisfies Eq. (4.13), and a
proof of Eq. (4.15) is also not hard. The proof that Pisin fact
indempotent is somewhat more difficult, but can be con-
structed straightforwardly by observing that any function
¥(q,,m4,..;t) can be approximated with arbitrary precision
as a sum of terms

¢EEH Ui (qarmy).

By exploiting the explicit form of P and the first identity
(4.8), it is easy to see that, when acting upon u, the opera-
tors P and L °® commute, so that

PL® jup =L Pug = L° g,
Similarly, one can prove that, when acting on u 5, PL ' serves

to define an “average” value. Thus, one verifies explicitly
that

PL' g ={L" Yun, (4.24)

where {L?,} denotes an “average interaction Liouvillian”
involving only the variables g, and 7,. The form of this
average will of course depend upon the form of L’,, and,
particularly, whether the fundamental interactions are two-,
three-, or higher-body. If, for example, L /, can be written as
asum of contributions L 4" ?"involving the interaction of A
with objects B,,...,B,,, each of which satisfies Eq. (4.7), one
can conclude that

(4.22)

(4.23)

L e =3 S ALL ", (4.25)
B, B,
where, explicitly,
(L2 ™y =T TeL] " "g(B) g(B,).  (426)

Note in particular that {L 7}, like L ’,, satisfies the identi-
ties (4.7) and (4.9).
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Now introduce the operator

A, =L", —{L"} (4.27)
One concludes then that, in the absence of initial correla-
tions, so that u, (z,) =0,
g (1)

———+ > L% Ouxr () + S{L' (DIpue (1)
ot A A

:f‘ dr P(OL(D) Y (1t — 7)
0

XD Ap(t—T)pg (1= 7). (4.28)
B

This implies that each g(A4) will satisfy an equation of the
form

dg(A
i;t’_’) + L% (g, + {L7, ())g(A,0)
=.7[g(A4,t)]
=] Tr ) drP(OL(1)YY (t,t— 1)
c#a € Jo

XZ AB(I—T)Hg(D,t—T). (4.29)
B D

If #[g] were assumed to vanish identically, one would be
reduced to a type of “‘mean field” description appropriate in
the limit that u ~I1,g(4). Itis the nontrivial .¥ which leads
to a nonconserved entropy.

Equation (4.29) simplifies further. Thus, by virtue of
Eq. (4.7) and the definition of P, it follows that, for any
function ¢,

[ Tr(1 —Pyg =0,

BE#a B
where the trace extends over the degrees of freedom of all but
one of the objects in the system. Given, moreover, that
& (t,t — 1) is constructed as a sum of terms involving
(1 — P), it follows that

(4.30)

II Trg@r—nyg=0.

B#A B
This means that, in Eq. (4.29), the operator P(z) can be
omitted. Equation (4.7) implies further that L(¢) may be
replaced by L , (), and it is also found easy to see that, since
L°, is independent of the variables B #4, its contribution
vanishes identically. Finally, note that Eq. (4.31) implies
also that L 7, can be replaced by A ,. One concludes, there-
fore, that

(4.31)

Zlgl= 1 l;rfg dtA, ()% (t,t — 1)
0

C#A

Xz Ap(t — Mgt — 7). (4.32)
B

B. The time dependence of the entropy

Given Eq. (4.32), it becomes straightforward to evalu-
ate dS /dt. It follows at once that

ds dg(A4)
— = — > Tr[1 +1 A)]——. (4.33)
. ; [r[1+logg(4)] p
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Equations (4.9) and (4.29) then guarantee that, in the ab-
sence of initial correlations,

% = 3 Tr[L°g(d)logg(d) +{L',Jgt)log g(4)]
A

— > Tr[1 +log g(4)].7[g(4)]. (4.34)
S 4

Equation (4.7), and the analog satisfied by {L,}, imply

further that the first two terms in Eq. (4.34) vanish identi-

cally, so that

das(t)

dt
t— 1
= — Trf dr 3 [1+logg(A)]A, () F (1t —7)

(0]

A
Xz Ap(t —T)ug(t—7). (4.35)
B
The antisymmetry of A, means that

ds(t) ___TrJ MTdt [Z A (t)logg(A,) |G (¢t — 1)
dt o A

XY Bp(t—Tug(t—1), (4.36)
B

and the fact that it satisfies the Leibnitz rule guarantees
further that

A, logg(A) =g (A, g(A) =pug 'Aug, (4.37)
so that, finally, one concludes that

dS:i(tt) =Trf B dTIuR-l(Z);(t)g(t’t_T)é-(t_T)’
O (4.38)

where

§=;AA,UR-

Given Eq. (4.38), the “short-time” H-theorem follows
immediately. In the limit that 7—0, & (£,t — 7) - 1, so that
for small intervals At,

dS(ty + At)

dt
An absence of initial correlations guarantees an initial in-
crease in entropy. Note further that this quantity is quadrat-
ic in the interaction Liouvillian, and, as such, if the typical
interaction is characterized by a coupling constant A, the
spontaneous entropy generation induced by u, will, at least
for short times, scale as A 2.

(4.39)

=Trug '(0)|£(0)|?At>0. (4.40)

For the case of a classical system, where i is realized asa
distribution function, the final inequality in (4.40) follows
immediately from the fact that i can never be negative. In
the quantum case, however, the density matrix ¢ need not be
positive definite, so that the positivity of dS(z, + At)/dt is
less transparent. The basic conclusion does, however, follow
immediately by working in a representation in which pp is
diagonal. That u1; may be diagonalized follows in turn from
the fact that the density matrix must be symmetric (i.e.,
Hermitian), and, once u; has been diagonalized, the in-
equality obtains trivially from the fact that the diagonal ele-
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ments of i1, and hence u ~!, must be non-negative.?’

If, initially, g, (t) does not vanish identically, the
expression (4.38) for dS /dt will contain an additional con-
tribution of the form

Tr[1 +logug () P(OL( TG (Lt (8,).  (4.41)

By exploiting the identity (4.30) and the fact that L is anti-
symmetric and satisfies the Leibnitz rule, one concludes then
that, quite generally,

d—S:TrJ‘PTdT/LR‘l(t);(t)g(t,t— E(t—T)
dt 0
—Trug ') G (Lt (1), (4.42)
where
o=Lug. (4.43)

This means that, in the limit that 7 = #,, the derivative
dS /dt need not vanish identically. Rather, one sees that

dS(ty) _
dt

which, depending upon the form of the initial g, and g,
could be either positive or negative! By judicious choice of
initial conditions, one can, at least in principle, induce an
initial decrease in the entropy.

This might, naively, seem a disturbing result, but
further reflection demonstrates that such a possibility
should have been expected. If one is allowed to choose the
initial conditions arbitrarily, one should be able to stimulate
either an initial increase or an initial decrease in .S. As dis-
cussed in Ref. 6, the situation is qualitatively similar to that
arising in the analysis of particle creation in a time-depen-
dent electromagnetic or gravitational field. Here again the
choice of an especially simple state, such as the vacuum or an
eigenstate of the number operator, leads to a spontaneous
generation of particles; but an allowance for more generic
initial conditions, in this case reflecting nontrivial “phase”
information, leads to the possibility of stimulated creation or
destruction of quanta.

Given these observations, it becomes clear that, as was
intimated in the Introduction, an H-theorem could only be
expected to hold in full generality at late times, after which
any nontrivial initial correlations have either “decayed” or
else have been completely “dwarfed” by the systematic cor-
relations induced spontaneously by the evolving dynamics.

—Trug ")ty (1), (4.44)

V.ENTROPY GENERATION AND PARTICLE CREATION

A. A simple example

The purpose of this section is to provide some general
insights into the phenomenon of particle creation induced by
mode-mode coupling and by parametric amplification, and,
specifically, to demonstrate that the former mechanism is
connected intimately with the generation of entropy. Specifi-
cally, it is also possible to prove a short-term “H-theorem”
for particle creation which states that correlations induced
from an initially uncorrelated state lead to an overall en-
hancement in the rate at which quanta are created. This
theorem, and other related phenomena, will be discussed
first for a system described by a specific model Hamiltonian

Henry E. Kandrup 1408



H(t), and thereafter, a general proof of the particle creation
H-theorem will be presented for a more general system de-
scribed by an arbitrary interaction Hamiltonian H’ con-
structed from the “coordinates”q,, .

The specific model Hamiltonian is chosen to take the
form

1 1
H=27(7A2+wAqu2) + Z 70,45‘1,443

] B #4

EZHOA + > Hg, (5.1)
A B #AA
where w,? >0 and ¢, are arbitrary real functions of time.

This leads to classical equations of motion

dq,
dt

=77'A

and

dm,
dt

or, equivalently,
d 2
—q; +w,.q, + z c4pqs =0.
dt B

This H is reasonable for several reasons.

(1) If ¢, =0 and the w,’s are assumed time-indepen-
dent constants, one recovers the massless Klein—-Gordon
equation in flat space. Thus, if one interprets 4 as labeling ak
vector and sets w,” = k2, the decomposition (2.8) leads
immediately to Eq. (2.14).

(2) Ifc ;5 =0but the w . ’s are allowed to be functions of
time, Eq. (5.1) includes as a special example the Klein—Gor-
don equation in a X =0 Friedmann cosmology. Thus the
identification

0r=k2—0/9, (5.4)

where () is the conformal factor and an overdot is a confor-
mal time derivative, together with the decomposition

= —w4°q, _ZCABqB’ (5.2)
F]

(5.3)

Q(x,0) =Q7"' Y g, (Dexp( — ikx), (5.5)
k
leads to a field equation
5 .
PR 2000 0,0 8 o s
ot Q o Ix® Ix®

which is nothing other than the Klein-Gordon equation
appropriate for a conformally flat space-time with
ds* = Q*(t)y,, dx*dx".

(3) In the case that ¢,z and w, are both nonvanishing
and exhibit a nontrivial time dependence, the Hamiltonian
(5.1) mocks quite reasonably the behavior of a scalar field in
a Mixmaster Universe. One might like also to allow for more
complicated nonlinear couplings, as induced, e.g., by a A®”?
ficld theory, but, as will be seen eventually, more complicat-
ed contributions involving ¢ 4pc; C4cp, €tc. do not alter the
existence of the basic H-theorem for particle creation.

The passage to a quantum theory can now be effected
trivially by canonical quantization, the Poisson bracket
structure being replaced by a canonical commutation rela-
tion
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(9478 ]— = i85 (5.7)

The quantum system is then characterized by a many-oscil-
lator density matrix u, the evolution of which is governed by
the quantum Liouville equation

du .
—— = —~-Lu= —i[Hu]_.
E M i[Hpl

Note for future reference that the free Hamiltonian L °,
satisfies

Lo E=i[H £]_, (5.9)

and that the average interaction Liouvillian defined in Sec.
IV takes the form

(5.8)

L7 Ye=i[{H" }.€]_, (5.10)
where
1
{H} = 2 Tr H38(B) =Z—CAB<qB>qA’
B4 B 5 2 .
(5.

the angular brackets { ) denoting an expectation value with
respect to the full many-oscillator g. This implies further
that the A, of Sec. IV can be realized in the form

A=) Yilhsb ], (5.12)
. B#£A
where
hig=H4Yp — Tr H,g(B) — Tr Hlpzg(4). (5.13)
B A

At this stage, it is customary to define creation and anni-
hilation operators

a, = (\/20),4 )—l(quA + i77',4)

and (5.14)
aly = (V2,) w.q, —iTy),

in terms of which the free Hamiltonian

HO:Z(wAZqA2+7TA2)
Y

=Z—1——a)A (a'qa  +a,a’y)
T 2

=za)A(aTAaA+—1—). (5.15)

4 2

In the absence of any interaction H /, the operator
N,=a',a, (5.16)

would admit to an unambiguous interpretation as “the num-
ber of quanta in mode 4.” In the presence of nontrivial inter-
actions, this interpretation is less clear-cut, but, at least in the
limit of weak couplings, where, typically, |¢| €@?, it is still
conventional to think of NV, as reflecting some measure of
“particle number.” Whether this generalization is reasona-
ble is, perhaps, unclear, but for the remainder of this section,
changes in the normal-ordered statistical expectation value

(NDY=Tra' ja,u=TrQo,)  "(7,> + 0,q,))p

=(wA)~1<HOA> (5.17)
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will be spoken of as corresponding to “changes in particle
number.” The statements in the Introduction and in the re-
mainder of this section regarding the net creation of quanta
refer specifically to the time dependence of (N, ).

The object now is to evaluate d (N, ) /¢, allowing for
contributions arising both from a changing u and from the
time dependence of the w,’s. Thus, one sees immediately
that

d(N.
_S_i:Tr_I__HOA a—'u-i—Tr,ui(LH"A).
at @, at dt\w,
(5.18)
It is then trivial to verify that
TrH, P o _iTrHC, [Hpy
ar
= —iTru[H H]_
= —iTru[H® H"]_. (5.19)
And, therefore, one concludes that
I(N,) @ 4
= — Tru(r,?—w,%q,%)
Y 20,2 p (i, 4 94
Can
— > —Trum,qs. (5.20)

B#4 Wy
The first term in Eq. (5.20) reduces at once to a partial
trace Tr, weighted by the reduced g(4). The second entails
couplings between modes 4 and B, so that one obtains in-
stead a double trace Tr, Tr, weighted by the two-oscillator
g,(A,B). Thus, if one writes

8.(A4.B) = g(A4)g(B) + v(4,B), (5.21)

where v(A4,B) denotes the pair correlation function, one
concludes that

I{N}) oy 5 5,
= — T, —w )
o 20, (m, 4 94
Cap d(N,)¢
— — (7 + —, 5.22
a;; ’ (m4)(q5) E» (5.22)
where
d{N,)°
IND_ S TrTrv(4,B)m,q, 22, (5.23)
ot BZ4 A4 B @,
Alternatively, in terms of the z, defined in Sec. 1V,
d(N,)° c
_i: — z Trluiﬂ-AqB_Ai' (5.24)

dt B4 [

The first two terms in Eq. (5.22) can be interpreted as repre-
senting a mean field particle creation d (N, )™/t which will
be present even if, in the spirit of the collisionless Boltzmann
equation, one were to pretend that u, ~0. The final term
represents instead a “‘correlational” particle creation in-
duced specifically by the correlations amongst the modes.
The field entropy (5.22) has no direct connection with the
mean field contributions, but it does connect intimately with
d (N, )¢/0t. Specifically, the same arguments which led to

the short-time H-theorem (5.40) imply also that
I{N,(ty+ Ar))/3t> 0.
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B. Correlational particle creation for the simple
example

Turn, therefore, to an explicit evaluation of this quantity
for an initially uncorrelated state. The analysis of Sec. IV
indicates that, in the absence of any initial correlations,

,u,(t)zJ ”dr%(t,t—r)ZAA(t—r),uR(t—r).
0 A
(5.25)

And, thus, in terms of the A, of Eq. (4.27), one concludes
immediately that

(N, ()¢

t—t,

. Can
=iNTr=rn dr 9 (1t — 1)
ot ; o, 498 3 (
X 3 [hep(t—T) gt —7)]_.  (5.26)
C#D
A simple application of the cyclic trace rule
Tr ABC = Tr CAB (5.27)
then implies that
(N, (D)) t
—-——< 1) = —z'zTrEfiﬁ dr
ot B @,y Jo
X E [hcz)(t_T)quﬂ'Ag(t,t_T)]_
C#D
Xpg(t—1). (5.28)

For small 7, % (t,t — 7) —1 and all the quantities in
Eq.(5.28) can be approximated by their values at time ¢#,, so
that

(N, (1, + AD))°
at
C
=—iy Tr 22 > [hcpgama] —pr (8)At.
B Wy C#D
(5.29)
One then verifies immediately that
[hcqu’TA 1-= (i/2)qplcsc (g —{qc?)b4p
+cap(qp — (9p))84c), (5.30)
so that
I(N, (2, + A1)
at
Can
= Z Tr— 2 95Cac(gc — (g ) r (1) At.
B W, °C
(5.31)

The trace in Eq. (5.31) implies that the only nonvanishing
contributions arise when C = B, so that

AN, (1, + Ab))© = (c4p)”
at B W,

({g5%) — {g5)")Ar>0!
(5.32)

One obtains a positive particle creation at a rate proportional
to the square of the coupling constant c.

C. General proof of spontaneous particle creation
induced by correlations

The object now is to demonstrate explicitly that an ana-
log of Eq. (5.32) will hold for an arbitrary interaction Ham-
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iltonian H ! constructed from the ¢’s. For such a more gen-
eral H', Eq. (5.24) will be replaced by the relation

I(NY

= —iTr-L[HH ] _u,, (5.33)
ot ®4
which can be written in the form
d(N)¢ 1 H  9H!
NaY Tr(ma L9 WA)#“
ot 2w, dg, dq,

(5.34)

where d /dq, is interpreted as an operator derivative.
The irrelevant contribution 1, now may be written as

1, (8) =if B OdT g([,l‘——'r)[hI(I—T),/.LR(t—T)]_,
° (5.35)

where /7 denotes an appropriate “fluctuating” interaction
Hamiltonian. For short times Af, one then infers that

wr(to+ A1) =i[h g (1) ] _At, (5.36)
so that
(N, (2, + At))* 1 7
(Ni(to+A0)° 1 . OH' oh s (10)AL.
ot (2F 99, 0q4
(5.37)

Quite generally,the fluctuating 4 can be written as a
difference H' — {H'}, where {H '} denotes an average in-
teraction Hamiltonian. And thus, one sees that the right
hand side of Eq. (5.37) reduces to

IN2 N2
(G} - (5] Jee
@ 4 99, dq.4
which establishes the inequality.
As a concrete example, one can consider an interaction

H ' again involving only pairs of oscillators, but now qua-
dratic in the g¢’s,

(5.38)

1
HIA = E _CABqAZqBZ' (5.39)
BFa 2
In this case,
1
hiy= 3 —cipq4°(95" ~ (45°)), (5.40)

B7a 2
and one concludes that

I{N, (1o + AD))°

ot 22;

(cqm )2

w4

(qu) ( (434) - <q32>2)-
(5.41)

Similarly, one can suppose instead that each oscillator 4 in-
teracts linearly with » other oscillators B,,...,B, via a cou-
pling c4p,... 5, The net result then is that

AN, (1, + Az))°©
at

(cABl"'Bn)2 Bn 2 B" 2
=33 L e — T (98 -
w4 B, B,
B,#: - #B,
(5.42)
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VI. THE UNIQUENESS OF THE ENTROPY

Another important question remains to be asked. To
what extent does the S(#) defined by Eq. (2.22) constitute
the unique field entropy? Even if one accepts the notion that
any measure of entropy should be constructed solely from
the g(A4)’s, and even if one could prove rigorously a very
general H-theorem for S(¢), there would remain the issue of
whether some other entropy Z(¢) could be shown to satisfy
the same properties.

Broadly speaking, given the general philosophy devel-
oped in this paper, there are only three mathematical re-
quirements which must be imposed upon such a candidate
Z(t).

(1) This Z(z) must be constructed solely from the
g(A)’s and contain no information about the interoscillator
correlations.

(2) In the absence of couplings between degrees of free-
dom, it must follow that dZ /dr=0.

(3) At least in some appropriate limit, one must be able
to show that dZ /dt>0.

To the extent, however, that one takes very seriously the
notion of a subdynamics introduced in Sec. IV, these de-
mands can be refined somewhat. Thus, in particular, it
would be reasonable to demand not simply that Z(#) be con-
structed only from the g(A4)’s, but that it be realizable as a
functional of the relevant i, at the same instant of time ¢,
i.e., that

Z(t) =Tr¥[ug (0], (6.1)

where VW is some arbitrary real function of . Similarly, in
the same spirit, one might demand further that, in the ab-
sence of initial correlations, dZ /dt be realizable quite gener-
ally as the simple trace of some object .« involving only the
relevant pp (¢ — 7), the Greenian ¥ (¢, — 7), and the fluc-
tuating Liouvillian A=3 A,
az _ Tr o [pg,A,9 ]
dt e
An explicit dependence on the individual g (4 )’s or any func-
tionals thereof would be considered inappropriate. As illus-
trated by Eq. (4.38), this requirement is satisfied by S(z).
And finally, it would be reasonable to demand at least that, if

ﬂ](to) =0,

dZ(t, + At) -0.
dt
As will be demonstrated below, it is in fact easy to con-
struct Z ’s which will satisfy the criteria (6.1) and (6.3), but
it is far more difficult to satisfy the condition (6.2). Thus, for
example, Eqs. (6.1) and (6.3) will hold for any

Z(t) = — Trug®(1), (6.4)

where p is a real number greater than unity, whereas Eq.
(6.2) will not be satisfied. Indeed, it is possible to prove that,
modulo an overall multiplicative factor and the addition of
conserved quantities, the field entropy S(¢) is the unique
object to satisfy the conditions (6.1)—(6.3).

Consider first the proof that the Z(z) defined by Eq.
(6.4) will satisfy the short-time H-theorem (6.3). A simple
application of the chain rule shows that

(6.2)

(6.3)
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9z _ _pZHU(B)TrgP_I(A)ag(A) (6.5)
dt A B A
where
(6.6)

A

One then verifies immediately that the mean field contribu-
tions to dg(A4)/dt havea vanishing contributiontodZ /dtby
virtue of Egs. (4.7) and (4.9), so that

“Z_ I B Trg? = (4) 7 [g(A)] .

(6.7)
dt d B#A

By inserting into Eq. (6.7) the explicit form of *[g(4)]
given by Eq. (4.32), one sees that

dzZ

- = —-p> [] o(B.:0)

A4 B #4

t— T

XTr drg? 'AnA, (O &G (1t — 1)

(o]

XzAc(t—T),uR (t—1). (6.8)
s

The facts that A, (¢) is antisymmetric and that it satisfies the
Leibnitz rule then imply that

dz —=p(p—DY [[oB)
dt A B#A
X Tr drgf H A [A, (g, ()] F (1t — )
(o]
XY A (t =g (t—1), (6.9)
C
or, equivalently, in terms of the quantity
6, =A, g, (6.10)
that
9Z _pp— DY [[eB
dt ABFA
XTr | drg = (Anue = (106, (0F (41 =)
0
XY Oc(t—1). (6.11)
C

The presence of the contributions involving o(B) and
&~ '(A) demonstrate explicitly that this candidate entropy
cannot satisfy the criterion (6.2). At this point, however, it is
easy to see that Eq. (6.3) will in fact hold. For small A¢, it
follows immediately that

GZUA 2D _ iy DY [[o®
dt T 54
XTrg?~'(dpg ~'0,> 0 At (6.12)
And thus, since )
Tr 6, (1) =0, (6.13)

one can conclude that
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ZUs 8D _ b 1S [[ o(Bito)
dt A B#A4
XTrg”~ ' (Ato)pr ~ ' (16)16,4 (1) AL,
(6.14)

For the special cases p = Oand p = 1,dZ /dt vanishes identi-
cally, as must of course be the case. However, for p> 1, one
concludes instead that dZ (¢, + At)/dt> 0.

If the system under consideration were a collection of N
identical point masses, rather than an infinite set of different
oscillators, Eqgs. (6.11) and (6.14) would assume a more
palatable form. Thus, if one considers N particles character-
ized by a distribution function or density matrix symmetric
under particle interchange, one would conclude that

Z =" (6.15)
where, now,
a(t)=Tr f7(i5t) (6.16)

is the same for each particle. This means that Eq. (6.11) will
be replaced by a relation of the form

Z—a—p(p DT e~ (06,
xy(n—r)ze(r—r), (6.17)
j=1
so that, for short times,
M :p(p — I)Trfp‘*l(l"to)
dt
pr (216, (25) |PAt, (6.18)

where u, (2,) is now a product of ¥ identical quantities.

Turn finally to the general uniqueness proof. For an ar-
bitrary function of the form (6.1), one concludes again that
a nontrivial dZ /dt is induced only by the ¥ [g(4)]’s, so
that, in the absence of initial correlations,

dv
—= —Tr
dt ;d,u,g

g~ (e J[ Tra®
C#a €
XJ B dTg(t,t—T)EAD(t—T)/,LR (t—1),
o
° (6.19)

where the superscript (C) is a reminder that A"’ depends
also upon the variables C #A4. The antisymmetry of A, and
the fact that it satisfies the Leibnitz rule then imply that

2
9Z e 1 L g
dr 4 B#a B alip

X I Tr[Aux (A,B)]f ) dr G (6t —T)
C#4 C o

XZAD(I—T),LLR(t-—T). (6.20)
D
Here A\®u (4,B) means that A\®, an operator involving 4
and the dummy variables C A4, acts on ug, viewed as a
function of A and different dummy variables B #A.
If dZ /dt is to depend only on i, rather than upon the
individual g(B)’s, one must demand that
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L4

g (A.B)ACug (4,B) (6.21)

2
II Ir d
B£4 B QUg

be independent of the g(B)’s. Since, however, the only rel-
evant universal property of g(B) is that it have unit trace,
this implies further that (d *¥/dug *)px must itself be inde-
pendent of g(B). Given, moreover, that d *¥/du > must be
a function only of , this can only be true if

d>v -1
=aq ) 6.22)
d,URz Hr (
where a is an arbitrary constant. In this case,
azw =aq TrZAA,uRf B dr% (t,t — 1)
dt 1 0
XZAB (t— T),U«R (t—171)
B
=aTr dré() &G (4t — et — 1), (6.23)

0

where £ was defined in Eq. (4.39).

The right-hand side of Eq. (6.23) is, modulo the con-
stant factor a, of precisely the form satisfied by the field
entropy S(¢) of Eq. (2.22). Thus, one concludes (i) that
Z(t) is consistent with the demand (6.2) if and only if
W (uyg ] satisfies Eq. (6.22), and (ii) that Z(¢) will evidence
amonotonic evolution if and only if $(#) increases monoton-
ically. The most general solution to Eq. (6.22) is of course

Wlug] =aug logug +bug + ¢, (6.24)
where b and ¢ are arbitrary constants. And, since
iTr(b,uR +¢)=0, (6.25)

dt
one can set b = ¢ = 0 without any loss of generality. The
most general entropy Z(z) consistent with Eq. (6.2) is,
therefore,

(6.26)

where g is a constant, and the demand that a be real and
positive guarantees that Z(¢) will satisfy Eq. (6.3).

Net conclusion: Modulo the addition of conserved quan-
tities and multiplication by a positive constant, the $(z) de-
fined by Eq. (2.22) is the unique entropy guaranteed to satis-
fy a short-time H-theorem (6.3) and consistent with the
general subdynamics in the sense that it satisfies Eq. (6.2).
Thus S(z) may, or may not, satisfy an H-theorem in some
broad generality. It is, however, the only candidate entropy
consistent with the demands outlined at the outset of this
section.

Z(ty= —aTruylogug,

VIi. DISCUSSION
A. The late time evolution of S

Section I of this paper introduced a notion of particle
entropy constructed explicitly as a measure of correlations
which, at least in one special limit, is guaranteed to satisfy a
short-time H-theorem inequality. Sections II and III then
generalized that definition to a classical or quantum field,
emphasizing in particular the question of “physical signifi-
cance.” The entropy so constructed is conserved absolutely
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in the absence of couplings between degrees of freedom, and,
as such, there can be no entropy generation for a source-free
linear field in Minkowski space. If, however, couplings are
induced by sources, by nonlinearities, or by a nontrivial dy-
namical space-time, the entropy need no longer be con-
served. And, as was illustrated in Sec. IV, one can prove a
short-time H-theorem which guarantees that an initially un-
correlated state leads (at least) to an initial increase in en-
tropy. Section V demonstrated that there also exists a direct
connection between entropy and particle creation, proving
that evolving correlations which induce a net entropy gener-
ation lead also to an enhancement in the rate at which quanta
are produced. Finally, Sec. VI showed that, in a well defined
mathematical sense, the entropy S(#) defined in Secs. II and
II1 is the only measure of entropy consistent with the notion
of subdynamics considered in Sec. IV. S(¢) may—or may
not—satisfy a sufficiently general H-theorem to be physical-
ly useful; it is, however, the only viable candidate for an
entropy compatible with the underlying symmetries inher-
ent in the subdynamics.

These are encouraging results, but it remains to consider
in greater detail the more generic time dependence of S.
After all, the principal utility of the intuitive notion of en-
tropy is that § satisfies an H-theorem quite generally. It is,
therefore, important to ask whether the S of Eq. (2.22) nec-
essarily increases monotonically for all times and whether,
or under what circumstances, there exists an approach of the
field towards a unique equilibrium state.

The basic desired properties of S can be summarized by
three conjectures, the validity of which will be motivated and
discussed in the remainder of this subsection.

(1) Neglecting “initial transients,” the entropy S is
guaranteed to increase monotonically for all times.

(2) If there exists a well defined static equilibrium state
Heq <exp( — BH), the increase in S coincides with an ap-
proach of i towards its equilibrium form.

(3) The equilibrium p., maximizes S, at least locally,
with respect to variations Sy which satisfy appropriate con-
straints.

It is important to stress once again that S cannot in-
crease monotonically for every possible system. If, e.g., the
system evidences a periodic evolution, S must also be period-
ic; and thus, if the entropy increases at one point of time, it
must decrease at another. A universal H-theorem can hold
only for systems which are, in some suitable sense, “com-
plex” or “ergodic.” It is also important to emphasize that the
neglect of initial transients is an essential caveat. In the ab-
sence of initial correlations, the immediate response of the
system is to increase its entropy. But, as discussed in Sec. IV,
if there do exist such initial correlations, they could in princi-
ple induce a net decrease in the entropy. Only after these
nontrivial initial correlations have “died away” could one
expect a universal H-theorem to hold.

The existence of such a universal H-theorem, and the
existence of a systematic evolution, is especially difficult to
address for a system in which no static end state can exist.
Some concrete results are, however, known for the special
case of systems characterized by a time-independent Hamil-
tonian. Most important, perhaps, is the fact that an arbitrary
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initial u,, cannot converge pointwise towards the equilibrium
fteq! It may well tend towards p., in some appropriate norm
or in some suitable “time-averaged” sense, but a true
pointwise convergence is simply impossible.

Indeed, that this is true is very easy to see. Given that H
is independent of time, there exists a conserved energy and,
as such, if some u;, were to converge towards a u., the final
inverse temperature [ would be determined uniquely by the
demand that (H );, = (H }.,. The problem, however, is that
this is not the only constraint that u., must satisfy. The lin-
earity of the fundamental Liouville equation implies that any
functional Tr A[x] must also be conserved, and it is easy to
see that, in general, the unique u., determined by energy
conservation cannot satisfy this infinite number of addi-
tional constraints. Only if one were to violate the Liouville
equation by allowing interactions with some external “bath”
could one hope to obtain a true pointwise convergence
towards the canonical u.,. A completely isolated system
cannot converge pointwise towards the true equilibrium.

However, the fact that ¢ cannot converge pointwise
towards ., does not imply that an approximate H-theorem
cannot exist. Indeed, a naive perturbation expansion appro-
priate in a “dilute gas” (|H '| €|H °|) approximation shows
that an homogeneous system of NV identical point masses will
in fact evidence a systematic increase in entropy. Thus, in the
absence of initial correlations, one concludes that the one-
particle distribution function f(/) will satisfy the Landau
equation.®?® And it is well known that the Landau equation
implies that dS /dt>0, with equality holding if and only if

f(i) cexp( — BH®, ), where, in terms of the particle mass 1,
H® =p*/2m.

For these and related reasons, it is natural to ask
whether the entropy (2.22) is in fact maximized by the equi-
librium g, (A)’s. More specifically, one would like to ascer-
tain whether the equilibrium S, is a maximum with respect
to perturbations Su which preserve probability [so that
Tr, g(A4) = 1], energy (H ) = Tr uH, and any other con-
served quantities. This is difficult to determine in general
because {H ) involves not only the g(4)’s, but the higher-
order correlations buried in such quantities as v(4,B). This
problem of entropy maximization would, however, seem
tractable in a dilute gas approximation, where the total ener-
gy (H) can be approximated by the mean field value
(H)"=TrugH.

Indeed, by using Lagrange multiplier techniques, Lyn-
den-Bell and Wood?® have proved that a self-gravitating sys-
tem of W identical particles confined within a sufficiently
small spherical box will in fact maximize S at least locally
with respect to infinitesmal changes in the /’s which conserve
probability and mean field energy. Their analysis does, how-
ever, reveal two interesting (and related?) points: (1) if the
box is too large, S will still be extremized by the equilibrium

Jeq (i)’s, but it will not be a local maximum; and (2) al-
though the £, (/)’s can maximize S locally, they never con-
stitute a global entropy maximum. These conclusions appear
related to the fact that, for a self-gravitating system, the
Hamiltonian is not bounded from below. For more well be-
haved interactions, one might expect that the equilibrium
state u., does indeed correspond to a global entropy maxi-
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mum.

As a concrete test of some interest, discussed in Ref. 6,
one can examine the Hamiltonian system of Eq. (5.1) in the
limit that the w,’s and c,,’s are independent of time,
contrasting the equilibrium entropy S, with the entropy S;,
associated with some plausible initial state of the same
energy (H ). Consider, for example, an initial state corre-
sponding to a ‘“pseudothermal” density matrix g,
< exp( — BH®). One concludes then that (i) if the w,”s
are positive and (ii) if the ¢ 5’s are sufficiently small, so that
H is a positive quadratic form and u., is well defined, the
entropy S,, associated with ., will be greater than the ini-
tial S,,. It is, however, also easy to show that i, could not
evolve pointwise towards the equilibrium g, since

Tr pi, 10g i #TX fheq 10g g -

B. Connection with black hole entropy

Superficially, at least, it might appear that the field en-
tropy S(¢) defined in this paper has precious little to do with
the entropy Spy attributed to a black hole in general relativi-
ty. The former provides a measure of correlations induced by
the evolving dynamics, whereas the latter, being defined in
terms of an event horizon, would appear to be an intrinsical-
ly geometric quantity.'’

There is, however, one significant feature which these
two entropies share in common. The existence of a nontrivial
entropy reflects in each instance the fact that one considers
only an incomplete description of the system. If, as a practi-
cal matter, an observer is unable to measure complicated
correlations between degrees of freedom, his knowledge of
the system is only partial. And similarly, given that an ob-
server cannot probe the insides of a black hole without being
lost forever to the external Universe, the existence of such a
black hole in his system imposes an inherent limitation upon
what he can discover about its state.

If one starts with a field characterized initially by com-
paratively weak and insignificant correlations amongst de-
grees of freedom, a knowledge of the g (A4 )’s and the associat-
ed relevant u constitutes a quite reasonable approximation
to a complete characterization of the system, so that the field
entropy S will be quite small. However, as the evolving dy-
namics leads to the generation of more significant and de-
tailed correlations, the g(4)’s provide an increasingly in-
complete characterization of the state of the system. One
knows less and less about the true state of the system, and
this loss of information is reflected by the fact that S(¢) will
increase.

The scattering of a scalar field ¢ by a Schwarzschild
black hole admits to a similar interpretation. An initial state
of the field, defined with support only outside the hole, can,
at least in principle, be measured with arbitrary precision
(modulo, perhaps, uncertainties in the form of the initial
correlations ). But there is no way that an observer can mea-
sure directly the complete final state: the portion of the field
captured by the hole will remain, at least classically, forever
inaccessible. This scattering experiment entails an intrinsic
loss of information, and, as such, should entail also an in-
crease in the entropy. Indeed, this is entirely consistent with
the geometric notion of black hole entropy. The piece of the

Henry E. Kandrup 1414



field captured by the hole will presumably have a non-nega-
tive total energy, so that, as a consequence of the scattering
process, the mass M of the hole will increase. This, however,
corresponds to anincrease in thearead = 167M ? of the hole
and a concomitant increase in the entropy Sy = 4 /4. In-
deed, Zurek and Thorne*® have very much adopted this
point of view in their “derivation” of the generalized second
law of thermodynamics for a system containing a black hole.

It is important to stress that, even in the presence of a
black hole, the fundamental equations characterizing the
evolution of the field remain deterministic. Given the specifi-
cation of initial data, an observer could, at least in principle,
predict uniquely the subsequent evolution of the system if he
knew already what was inside the hole. Formally, at least,
one can define a field theory in a Schwarzschild space-time,
even inside the event horizon. It then makes sense to intro-
duce a density matrix g which will satisfy a linear Liouville
equation, and, given this Liouville equation, one concludes
that the “conventional” entropy — Tr i log 2 will be a con-
stant of the motion. The point, however, is that the total u is
not accessible to an observer outside the hole. What is rel-
evant to him is instead the “piece” of the density matrix x,
which could be measured directly by someone outside the
hole. And, as discussed, e.g., by Sorkin and his co-workers,*'
the entropy — Tr u, log 1, need not be conserved.
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Properties of a mode announced in a previous paper are proved. This involves some
complicated calculations in linear algebra, and observation of the structure of a function of

several complex variables.

I.A; AND A;, LINEAR ALGEBRA

A (p) is given by (3.12) of Ref. 1. We will consider a
mode at level zero, specified by bond assignments at level
zero, having only one bond assignment different from zero.
We choose the bond to be the bond in the + 1 direction from
the origin, and the assignment to it to be unity. By invariance
under certain interchanges of coordinate axes it is sufficient
to find 4 | and 4 ; to determine 4 ;.

With 7 fixed, (3.12) of Ref. 1 is a matrix product, ABC,
with 4, B, C, respectively, a (1X6) matrix, (6X 6) matrix,
and (6X 1) matrix. The coordinates of the six-dimensional
space are labeled by oriented plaquette directions, for which
we choose the ordering

(1,2), (2,3), (3,4), (1,3), (14), (24). (1.1)

We find it convenient to introduce certain special nota-
tion and matrices. We let

fi=e™ =1 (1.2)
and D be the 6 X 6 diagonal matrix with
Djup =1 1 (1.3)

(here labeling rows and columns of D by the associated ori-
ented plaquette directions). We let

ko)=Y -1

2
h(p + 2mn),
(p; + 2mn;) P

(1.4)

( + 277” i=1
where 4 is any function of p = (p,p>.P3,04)-

We now detail the matrices occurring in (3.12) of Ref.
1. We first view the (6 <X 1) matrix

1/p} + 1/p% —1/p2 0 1/p?
— 1/p3 1/p5 + 1/p5 — 1/p3 1/p3
0 —~ 1/p; 1/p3 + 1/p; - /P
1/p} 1/p3 —Upy  1/p} + 1/p}
1/p? 0 1/p2 1/p?
— 1/p2 1/p3 1/p% 0

Here (M,) is a positive Hermitian matrix, and w, is in its
range. We deal with the limit

lirg((Mo) + ) 'w, (1.14)
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/J’ye""""zvl E_/_’l_ 1Bwl, (1.5)
wIE(l,O’O!lyl’O)T’ (16)

where the bars indicate complex conjugates. We next view
the left (1X6) matrix, two different vectors depending on
whether one is studying 4 | or 4 5. With r, defined by

—1
= 1.7
e (277)2 H( P ) (7

we have

P, =r, (1/p)wiD (1.8)
and

P, =r, (1/p,)wiD (1.9)
with

w,=( — 1,1,0,0,0,1)7. (1.10)
At this point we may write (3.12) of Ref. 1 as

A (p) = (/P )P.M v, (1.11)

Recall M is singular; and M ~' is defined on suitable vectors
aslim,_,. (e + M)~

Substituting (1.5) and (1.8) or (1.9) into (1.11) we get

A= (=) i (/pHwl (M)~ w,, =12,
(1.12)

where
M =D (M,)D (1.13)

and the inverse of (M) taken in the same sense as the inverse
of M. We now display M,, itself, in its full glory:

1/pt —1/p3
0 1/p3
1/p; 1/p%
1/p2 0
1/pt + 1/p 1/p;
1/p2 1/p% + 1/p}

i

This limit may be taken by the following procedure. Let Pbe
the (orthogonal) projection onto the range of (M), S. Let
m = P (M) P, a strictly positive Hermitian matrix. We in-
vert m, in S, writing it as 72~ '. One has for the result of
(1.14)
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(1.15)

The observations of this paragraph reduce the computations
of (1.12) to calculations in a three-dimensional vector space.
We note that S is spanned by w,;, w, and
w; = (0,0,1,0,1,1) 7.

We first present the results of the computation in
(1.15):

(My) " 'w, = (1/2 ) (4bc + 4bd + 8cd,4bd — 4cd,
4bc — 4bd,4bc + 8bd + 4cd,

m~w,.

8bc + 4bd + 4cd,dbc — 4cd) 7, (1.16)
where
= (1/p%), b= {1/p?),
a=(l/p}) (1/p3) (L17)
and
g = 162 H(l/pf). (1.18)

k jAk

Here & has arisen as the determinant of the 3 X3 matrix
involved in the computation of m ™!,

Collecting our results and substituting into (1.12) we

easily find

, —_; Y1 16//1 1
ai=(=n7 )5 (G G)

(o - o

Il. A; AND X(p)

From (1.19) and (1.20), and the invariance under in-
terchange of coordinate directions—except for the special
one-direction—we find our expression for 4 ; (p),

, -_,; 1\ 1 16
Ai=(_rLfl lp_z)—iglia (2.1)
e A [ R ey
2 3 2 4 3 4
= (2.3)

1
L=~ <—>, i#1.
j;IeI,i P}

A little study of these expressions for the region near
P1~D>~P3~ps~0 shows that the 4 [ have a singularity in
the complex four-dimensional region on the surface p*> = 0,
of course hitting the real axis. We define 4 ¥(p), a gauge
transformation of 4 [ (p), by

AY(p) =A4[(p) +p.X(p),

with
- 1 1 1
X()=(—r =1 ) ,  (2.5)
F S ) e Ga

where s is an arbitrary integer, sufficiently large. The analyt-

(2.4)
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ic properties of A4 ¥(p) will be studied in the next section.

lll. ANALYTIC PROPERTIES OF A(p)

The analysis we follow herein is analogous to the similar
analysis due to Gawedzki and Kupiainen in the appendix of
Ref. 2. We take the analytic extensions of the expressions in
Sec. II from real p to complex p. For example,

-7;_)eipi_1
and
e 1|7 eTP_1 eh-1
p: + 2mn; p: + 2mn; p,~+217'n,-‘

We make the preliminary observation that f;, D, &, and ()
are periodic functions of p, invariant under

p—p+2mn 3.1
(n is a four-vector with integer components). We note that
r., p°, and p, are not periodic functions of p.

Because of the periodicity mentioned in the last para-
graph it is natural to divide our results into the following
three theorems.

Theorem 3.1 (Local analyticity ): Thereis an €, > O such
that in the domain, &, , specified by

—m<Rep;<m, |Imp;|<é, (3.2)

AY(p) is analytic.

Theorem 3.2 (Global analyticity): 4 N (p) is analytic in
the domain, & ¢, specified by

|Im p; | < €. (3.3)

Theorem 3.3 (Boundedness): Within the domain, &,
specified by

lIm p;| < €/2, (3.4)
A ¥(p) satisfies bounds of the form
1 1
4¥ ()| <e]] (3.5)

5 (gl + D PP+ 1
In Theorems 3.2 and 3.3 the ¢, is as defined in Theorem
3.1
Theorems 3.2 and 3.3 are easy consequences of the form
of 4 ¥(p) and Theorem 3.1. We will devote our attention
entirely to the proof of Theorem 3.1, which is carried out in
Sec. V.

IV. CONCLUSIONS

Equations (3.13)-(3.15) of Ref. 1 follow directly from
Theorems 3.2 and 3.3 of the last section by standard tech-
niques.

V. LOCAL ANALYTICITY
We must study 4 Y(p) on &, [of (3.2)]. We write
A¥(p) from (2.1)~(2.5),
116, /2 1 1 ]
p 2 PP A+p7Y
(5.1)

In studying analyticity we may remove the factor — r; and
replace £ ' by p; . We thus study

- 1
AN(p) = _rLfl_l’j[
p
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1 1|1 16 Di 1 1
a;(p) =——[ i+ = ] (5.2)
p P lp 2 Pty (14 p)"
We introduce some notation
pi1/p}) =ro(p)e; (p) (1/p?), (5.3)
wheree; (0) =1 and
4 — ip; . 1 2
ro(p) = H e—P‘“ (5.4)
i=1 i

It will be sufficient to study a,(p) and a,(p). With the nota-
tion of (5.3) and (5.4) we have

ro(pla,(p) = (piese; +P§eze4 +p§e3e4)
Ekpkn ik €
1 1
_ZEL‘ZS’ (5:3)
poe (1+4p%)
— P2 P papy 1 1
ro(pla,(p) = €384 + —_ .
Ekpinj;ékej P oe (1 + %)
(5.6)
We now write e, (p) as
e,(p) =1+6,(p), (5.7

near p =0, §, is small. In (5.5) we substitute (5.7) and set
6; = 0to get

ro(p)ad (p) =1+ (—‘— 1) (5.8)
(1+p%)y
and
ro(p)ad (p) = 2221 (—1———— 1). (5.9)
(1 4 p?)*
Writing
a,(p) =a}(p) + R, (p), (5.10)

we see from (5.8) and (5.9) that ¢ (p) are analytic in &, .
This is the main “algebraic miracle” involved in showing
local analyticity of 4 Y(p). This algebraic miracle motivat-
ed, of course, our choice of X, (p), which, however, was far
from unique. We turn our attention to R, (p). By showing
the analyticity in &, of R, we will have completed the
proof. (We have already used the analyticity in &, of r,,
pify andrg ')

All hinges on certain properties of ¢, and §; in &,
which we now pursue.

V1. PROPERTIES OF THE ¢,(p) IN Z,

(1) e;(p) is analytic, (6.1)
(2) 8,(p) =pip’h,(p) with h;(p) analytic, (6.2)
(3) e, !(p) is analytic, (6.3)
4) —1——% is analytic. (6.4)

Ekpi Hj;é € P

It is quite immediate that (6.1)—(6.4) imply the analyticity
of R, (p). We are faced with our final task, the proof of these
properties. (1) and (2) follow from the form of e; (p) upon
inspection. It is only (3) and (4) that must be studied.
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We write ¢,(p) in elaborate fashion [e,(p) and e, (p),
i#1, have the same properties],

e(p)=1 +p22[xp(l)Hp K, (p)
P

+xpc(1)p%Hp%K,’,(p>], (6.5)

1l

(6.6)

K
o (P)= Zp (p+ 2mn

Kl
o P)= ‘S:",, (p—i—27rn)2 H (p; +21Tn )?
1
X
(p, + 2mn,)

(p +277'n )2 ’

6.7)

where
(a) p is a proper subset of (1,2,3,4);
1 lep,
(b) x, (1) = {0 1ép,

Xoe (1) = {? 1:

(c) n~p means that p = {i,n;, = 0}.
We easily see, for p in &, that

K, (p)|<m, |KL(p)|<m, (6.8)
for some fixed m. And that

|Arg K, (p)| <€, |ArgK,(p)| <€, (6.9)

where €' can be made arbitrarily small by choosing €, of
(3.2), suitably small. Again we have

if |p;|*>€
if [p|*>€,

|Arg p?| <€” [* (6.10
|Arg p?| <€” 10

where €” and € can be fixed arbitrarily small, choosing ¢,
small enough. Picking €, €”, and € small enough, and using
(6.8), weseee, (p) isinvertible in & ; and so analytic imply-
ing (3), (6.3). [ The terms on the right side of (6.5), individ-
ually, will either be small, or have small argument. ]

We turn to the study of (4), (6.4). We write the brack-
etsin (6.4) as

L 1. 1 ¢ (6.11)

pP(l+g) p pl+g

this relation defining g. Property (4) will be proved by show-
ing

(5) g/p* is analytic, (6.12)
(6) (14g) " is analytic. (6.13)
For g we find the formula
Pi
g=2_2[n(1+5,)_1]. (6.14)
kP oLk

From (6.2) we see that (5) [(6.12)] holds. The proof that
(1 4 g) is invertible, and so analytic, follows quite immedi-
ately from the proof above that e,(p) is invertible.
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Two possible quantization procedures for field theories with noncompact symmetry are
discussed: one in a positive-definite Hilbert space with negative-energy states and one in a
Hilbert space with indefinite metric and positive-definite energy. The physical interpretation of
these alternative procedures is explained in terms of the realization of the noncompact
symmetry, which is broken in one case and not in the other. It is shown that in exactly solvable
quantum ¢ models the noncompact symmetry is broken in the vacuum. Some arguments
supporting the general validity of this result are given. It is concluded that in contrast to
theories like quantum electrodynamics, the noncompact ¢ models are to be quantized in the
positive-definite Hilbert space with negative-energy modes.

I. INTRODUCTION

Positivity of the energy of physical systems is one of the
fundamental postulates of quantum theory. It is introduced
to explain the existence of a stable ground state of the system.
In addition, it is fundamental in establishing the second law
of thermodynamics (i.e., the increase of entropy with ener-
gy). In particular, the kinetic energy of physical systems is
usually assumed to be positive and therefore takes the form
(after proper normalization of the variables):

. 1.
T(q,-)=27q?- (1.1)

If the total energy is
H=T(g)+AV(q,), (1.2)

andif 7(g,) > AV (g, ), the system has an approximate O(N)
symmetry:

(1.3)

which becomes exact if either V(q;) is an invariant itself,
V(q;) = f(g?) (central forces), or if A —0.

In systems with infinitely many degrees of freedom, like
field theories, similar observations can be made. In particu-
lar, for fields ¢; described by a positive-definite Hamiltonian
density

q;=Rijqjl RU=R17‘,

H="1 5 @+ (V)7 +4V4). (1.4)
the kinetic term and gradient terms are O(N) invariant, a
consequence of the positivity of the theory. However, there
are physically relevant theories that admit an (exact or ap-
proximate) noncompact symmetry, such as O(N,M). Field
theories of this type have Hamiltonian densities of the form

H=— 3 (i + (V7))

~ %Z((ﬁ—}—(VU,)Z)-}—/{V(a,ﬂ), (1.5)

* This is a combined and revised version of two earlier papers, which ap-
peared as preprints WUB 84-9 (unpublished) and NIKHEF 85-12 (un-
published).
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where {7, } denotes a set of fields with positive energy and
{0, } a set of fields with negative energy. Of course, the ap-
pearance of degrees of freedom with negative energy contra-
dicts the physical principles mentioned above. Although in
some cases one may question the absolute validity of these
principles, we study in this paper systems for which the de-
grees of freedom with negative energy are unphysical and
can be eliminated by imposing suitable constraints, resulting
in Hamiltonians which are bounded below. [For example,
no instability arises in the absence of perturbations or inter-
actions coupling to both the positive and the negative-energy
modes; therefore, under special circumstances, it is possible
to create systems with negative temperatures (Hamiltonians
bounded above) in the laboratory.']

Examples of theories of this kind are quite easy to find,
and some are actually very familiar. As a first example, con-
sider the O(N,1) nonlinear o model.>~'? This model can be
defined by the O(V,1) invariant Lagrangian { our metric has
signature ( +,+,+,— )],

1 X 1
Y= _ 72‘41 (8,m)* +?(8H0)2, (1.6)
with the additional constraint
cl—w=1/g. (1.7)

To prove, that the energy of the system is bounded below, we
solve the constraint in terms of N scalars ¢;:

¢ 1 1
= o=——— (1.8)
V1—g¢’ Vg V1—g¢’
Then the Lagrangian becomes
a 2
e i_(#‘")_n‘ (1.9)
2 (1—gg™)
The conjugate momentum to ¢ is then
| G (1.10)
@® (l_g(PZ)Z
and the corresponding Hamiltonian is
1 1 (Ve)?
H=—(1—g¢))T2 4+ ————F¥ | 1.11
2 e Ty T ey (L1
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It is manifestly positive definite. Note, that the Lagrangian
(1.9) stili possesses the noncompact O(N,1) invariance, but
now realized nonlinearly:

5 = ay@; + (1/g) (b, +gb,@* — 2gbrpp,) . (1.12)
Hence, the physical scalars 7; or ¢; may be interpreted as
Goldstone bosons describing the spontaneous breaking of an
internal O(N,1) symmetry to its compact subgroup O(N)
(Refs. 2,4,5). This example can easily be generalized to oth-
er nonlinear o models on G /H, where G is noncompact and
H its maximal compact subgroup. Such noncompact ¢ mod-
els form an intrinsic part of N-extended supergravity theor-
ies (N>4), where they describe the scalar partners of the
graviton. "

A second example of a constrained system with non-
compact symmetry is provided by Maxwell’s theory of elec-
tromagnetism. In this theory, the fundamental fields may be
represented by a vector potential 4,, from which one
can compute electric and magnetic field strengths F,
=d,4, —3,4,. Since the physically observable field
strengths are invariant under a gauge transformation
A,—-A, =4, +3,A, we can impose the Lorentz condi-
tion d-4 = 0. The Maxwell equations which describe the
dynamics of the electromagnetic fields can then be obtained
from the Lagrangian density

KL= — 13,A)* +1(3,40)%, (1.13)
with the fields constrained by
dA=V-A—A4,=0. (1.14)

This Lagrangian is manifestly invariant under O(3,1) rota-
tions on the fields (A,4,). Of course, these transformations
are just the standard Lorentz transformations acting on the
four-vector potential 4, . The correct Hamiltonian density
for the electric and magnetic fields is

H=E +B, (1.15)

where E=VA4, — A and B = VXA, as usual. Again the
Hamiltonian is positive definite.

A third example worth mentioning here is the theory of
the relativistic string.'* The free string may be described by
the action'®

S= %Jaﬂg Jeg3,X" 3,X ", .

The variables X # represent the string coordinates, whilst
€. is the metric of the two-dimensional world sheet of the
string; 7,,, is the Lorentzian metric of the D-dimensional
space-time in which the string moves. Clearly, the action is
invariant under the (noncompact) D-dimensional Lorentz
transformations. The 2-D metric g is not a dynamical degree
of freedom, but may be interpreted as a kind of Lagrange
multiplier imposing constraints

T, =3,X"3,X, — 18,87 3. X" 3, X, =0. (L.17)

Again, these constraints guarantee the positivity of the ener-
gy in this theory.'®

Thus we see that constrained systems with noncompact
symmetries are quite common. Note, however, that there is
an important difference between the first example and the

(1.16)
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other two examples: in the nonlinear o model we could inter-
pret the noncompact symmetry as a spontaneously broken
internal symmetry, whereas the noncompact symmetry of
the electromagnetic field and the relativistic string is Lor-
entz invariance (a space-time symmetry) which normally
we do not expect to be broken.

In this paper we address the problem of quantizing sys-
tems with noncompact symmetries, and we show that the
physical realization of the noncompact symmetry (spontan-
eously broken or not broken) determines the correct quanti-
zation scheme. We illustrate the general principles only for a
few simple cases like the O(N,1) model and Maxwell’s the-
ory, but the results carry over directly to more complicated
models. Applications have been given elsewhere,'' but a
brief discussion of the consistency of the quantized theories
is presented in the last section of this paper.

il. CANONICAL QUANTIZATION OF THE NEGATIVE-
ENERGY MODES

Free fields may be considered as collections of harmonic
oscillators. Therefore the study of harmonic oscillators is
directly applicable to the case of relativistic fields. In this
section we discuss two different quantization procedures for
oscillators with negative kinetic energy.'’~*° Consider a clas-
sical harmonic oscillator with negative energy and Lagran-
gian

L= — 17 +1o°¢. (2.1)
Note, that owing to the time-reversal invariance of L, the
action § L dt is obtained from that of the positive-energy
oscillator by reversing time: t— — ¢. The first method to con-
struct a quantized version of this system uses the standard
correspondence between Poisson brackets and commuta-
tors. For the momentum and Hamiltonian of the classical
theory defined by (2.1) we obtain

_OL _

. . 1
p=—i=—§ H=pg—L=— —(p’+0°¢).
aq 2

(2.2)

Clearly the classical Hamiltonian is negative definite (hence
bounded above). The Hamiltonian equations of motion are

¢g={Hgq}, p={Hp}, (2.3)
where the Poisson brackets are defined by
{(48y=094 0B 0B o4 (2.4)
dp dg  dp 9q
It follows that
gt =1 (2.5)

According to the correspondence principle, one obtains a
quantum theory by replacing the coordinates and momenta
by operators p and § and the Poisson bracket {, }byacom-
mutator (i/#) [, ]. Thus

(5.4l = —in. (2.6)

As for the standard harmonic oscillator, we introduce the
creation and annihilation operators defined by

8= (1/\27w) (0§ + ip), &' = (1/\2Hw) (w0 — ip) .
2.7)
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They satisfy the commutation relation
aat] =1 (2.8)

With these operators one can construct a complete Hilbert
space of orthonormal states for the negative-energy oscilla-
tor, starting from the ground state defined by

3]0y =0, (0[0)=1. (2.9)

This state is well defined, as may be checked in the coordi-
nate representation, in which

0) > 1 = ce ™ /P (2.10)
The excited states are
[n) = ((a")"//n)|0), (n|m)=35,,, . (2.11)

Thus all states have positive norm. The Hamiltonian reads

H= —thw@a+1). (2.12)
Its eigenvalues are negative definite:
E =—(m+hHfio, n=01.2,.. (2.13)

The time dependence of the operators in the Heisenberg rep-
resentation follows from the Schrédinger equation

da

2% — (aH 2.14
” (a,H]. (2.14)

This gives
a(t) =a(0)e™, a'(t) =a'(0)e . (2.15)

Since w is taken positive, the annihilation operator a here has
the same time dependence as the creation operator &' in the
case of the positive-energy oscillator, and vice versa. From
Eqgs. (2.7) and (2.15) one obtains

§(t) = (A2w)*a(0)e™" + a*(0)e — ™), (2.16)

and for the Green’s function:

(0174(14(0)0) =%(9(,)e,-m+ 6 — e~ )

_ _Z‘h_ @ d e~ ikt .
rJ_w  kP—0®—ie

(2.17)
This Green’s function differs from that of the standard posi-
tive-energy oscillator in two respects: (1) the ie prescription
has the opposite sign; and (2) the residue has an extra minus
sign as well.

The above results are easily understandable from the
point of view of time reversal, since negative energies and
positive time direction are equivalent to positive energies
and negative time direction. The notions of advanced and
retarded Green’s functions have therefore been inter-
changed. We now contrast this treatment with an alternative
method of quantization involving negative-norm states. This
method results in positive energy expectation values. As not-
ed already below Eq. (2.15) positive energies require inter-
changing the role of creation and annihilation operators.'’
Thus if we define

br) = b(0)e ' = a'(p),
bi(t) =bT(0)e =a(r),
then

(2.18)
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§(r) = (A/20)%(b(0)e= " + b 1(0)e™).  (2.19)
The Hamiltonian becomes
H=tfw(-b%h+1). (2.20)

In spite of its somewhat unusual appearance, this represents
an oscillator with positive energy. The difference with the
ordinary harmonic oscillator is that b,b* satisfy unphysical
equal-time commutation relations'”'*:

[bbt]= —1. (2.21)
If we define the energy eigenstates by

bl0y =0, (0|0)=1, (2.22)
for the ground state, and

In) = ((6")"/n!)|0), (2.23)

for the excited states, then the energy expectation values are
(E,) = #iw(n + 1), while the normalization of the states is

(nlm) = (=)"6,,, - (2.24)

Thus all odd eigenstates have negative norm. Using (2.19),
(2.21), and (2.22), we can compute the two-point function:

(0|T4(1)3(0)|0) = — (#/2w)(0(2)e = + O( — t)e ")

3 £ — ikt
AT e (225)
27 J - k?—w?+ie
Again, the residue is negative, but the /e prescription is now
the same as for the positive-energy harmonic oscillator.
Summarizing and comparing the two different quantum
theories of the negative-energy oscillator, we note that they
are related formally by the correspondence (2.18). However
they differ in the choice of groundstates used; namely, the
state |0) is annihilated by the operator &, while the state |0)
is annihilated by b = &' . Because |0) # |0), the two proce-
dures correspond to different dynamical realizations of the
system. In this respect one may think of the relation (2.18)
as a kind of Bogoliubov transformation between the ground-
states |0),/0). An order parameter can be introduced as
(b1h), which s positive in the state |0), and vanishes in the
other one, [0).

lll. REALIZATION OF NONCOMPACT SYMMETRIES IN
QUANTUM SYSTEMS

In order to study the interpretation of the two quantiza-
tion schemes in the context of systems with noncompact
symmetry, it suffices to consider the simple example of two
oscillators with opposite energy and an O(1,1) symmetry:

=431 —#3) — 40’ (a7 —23) - (3.1)
This is just the linear O(1,1) sigma modelin (0 + 1) dimen-

sions, invariant under the infinitesimal O(1,1) transforma-
tions

(3.2)

If the quantum system is defined using the positive-definite
Hilbert space with negative-energy states, the operators de-
scribing the two degrees of freedom of the system are

2 (1) = (ﬁ/Zw)”Q(alewwr+are.-m) ,
z,(8) = (ﬁ/Zw)l/z(&ze‘“”+a;re—iwz) .

5.2”1 = Qxy, 5.2"2 =azy.

(3.3)
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The raising and lowering operators &, &, satisfy the equal-
time commutation relations

[a,.8]1=6; ,)=(12). (3.4)
The Hamiltonian is
H=tw(ala, — ala,) . (3.5)

The noncompact symmetry is realized on the creation and
annihilation operators by

(3.6)

One can show without difficulty, that this leaves the commu-
tator (3.4) invariant. The transformations (3.6) are genera-

84, = adl, 84,=ad .

ted by a charge

Q=aa,—alal = — Q. (3.7)
Its commutators with the &;, &} are

(04, =al, [Qa]=4al. (3.8)

The O(1,1) charge @ commutes with the Hamiltonian:
[(QH]=0. (3.9)

Hence the Hamiltonian is invariant and the charge con-
served.

We define the groundstate as the state with occupation
numbers (0,0) (it is more appropriate to call this a vacuum
state, since it is not the state of lowest energy):

4;10) =0, (0j0) =1. (3.10)

Since the two oscillators do not interact, no energy can be
exchanged between the positive and negative-energy subsys-
tems. Therefore the vacuum (3.10) is stable under perturba-
tions that couple only to the positive-energy degree of free-
dom (as one expects when the negative-energy degree of
freedom is unphysical and can be eliminated by imposing
suitable constraints).

It is immediately evident, that the vacuum (3.10) is not
0(1,1) invariant:

010y = — |;;1). (3.11)

Here |n;m) denotes the state with occupation numbers
{n,m) for the oscillators (1,2). By continuing to apply Q, we
can actually construct an infinite multiplet of states with the
same (vanishing) energy. This is expected from the theory of
unitary representations of noncompact groups.'** It is easi-
ly explained here by observing that the commutator of Q
with the occupation number operators #; = @/, is nonvan-
ishing, even when acting on the vacuum. We wish to stress
that the noninvariance of the vacuum (3.10) is not a result of
diagonalizing a wrong set of observables in searching for a
ground state. Attempts to construct an O(1,1) invariant
state which does not have well-defined occupation numbers,

V= Se,,lmm) with Q¥=0, (3.12)
n,m

fail, because such states turn out to have infinite norm. Thus
we have a conserved charge Q (commuting with the Hamil-
tonian), but no invariant states. In this sense the noncom-
pact symmetry is broken in this realization of the quantum
0(1,1) model.

The observations made for this simple system can be
extended to the case of noncompact field theories as well.
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Thus a quantum noncompact field theory with a positive-
definite Hilbert space does not have an invariant vacuum,
although the charges connected with the noncompact sym-
metry may be conserved.

When the other quantization procedure is chosen, using
a Hilbert space with indefinite metric, the dynamical vari-
ables of the theory can be expanded as

20 = (#/2w)"?* (8¢ " + aje"),

}z(t) — (ﬁ/zw)]/z(aze-—im + a;eiwt) ,
where the previous b operators are now denoted by a,,8],
and the fundamental commutators are

(3.13)

[8.,8]] = (73); . (3.14)
The Hamiltonian is
H=to(ala, —ala, +1). (3.15)

In this case the noncompact O(1,1) symmetry is realized by
(3.16)

Again, the commutator (3.14) is invariant. The generator of
the transformations is

da, = aa,, 6a,=aa,.

(3.17)

It commutes with the occupation number operators only on
states with occupation numbers (0,0). There is a unique
state with this property; thus the ground state defined by

4,10y =0, (0[0) =1, (3.18)
is 0(1,1) invariant: @ j0) =0.

This result holds more generally for systems with non-
compact symmetries quantized in a Hilbert space with inde-
finite metric, which has only positive-energy states.'®

Summarizing, the two quantization schemes for systems
with noncompact symmetry correspond to a realization of
the system in a positive-definite Hilbert space with negative-
energy states and spontaneously broken noncompact sym-
metry, in the sense defined below Eq. (3.11); or alternatively
a realization of the system in a Hilbert space with indefinite
metric, but with strictly positive energy and an invariant
vacuum.

A
Q=aja,— a4, .

IV. PATH INTEGRAL QUANTIZATION

As might be expected, the two different quantum real-
izations of theories with negative-energy modes also have
different path-integral descriptions. The correct form of the
path integral for the two quantum theories discussed in Secs.
11 and I1I can be established in various ways, for example, by
discretizing time, from the holomorphic representation, or
using the completeness relation for the eigenfunctions to
compute the integral kernel for the Schrodinger equation.
Here we do not give a derivation from first principles, but
merely state the results. However, we compute the two-point
functions and show that they reproduce those of Egs. (2.17)
and (2.25). For the case of noninteracting oscillators this
amounts in fact to a complete proof of the results.

For the case of the negative-energy harmonic oscillator
quantized in a positive definite Hilbert space the correct
form of the path integral is
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Z[j]=(0,T—>ool0,T-.;——°o>j

=lim qu(t) exp Lf (L + —l~'€¢12 +j9) dt
€10 ﬁ — 2
4.1)

with L as in Eq. (2.1). The integration over the ¢(¢) runs
from — oo to + oo along the real axis. Strictly speaking, the
7€ term is not necessary for convergence of the integral, but it
is included to indicate the proper analytic continuation of
the frequency @ to complex values. Such a continuation al-
lows a smooth limit to the case of zero mass (Re w =0),
which needs extra regularization (the determinant develops
a zero mode). In fact the integral is well defined for all com-
plex values of @ such that Im w>0; however it does not exist
for Im w <0. [Of course, the determinant does exist for
Im w < 0; however, for such values it cannot be represented
by the integral (4.1).] The analytic continuation made in
(4.1) also defines the correct time ordering, as may be seen
by computing the two-point function and comparing it to
(2.17). This computation is facilitated by the inclusion of
the external source term j(¢)g(¢): the propagator is now ob-
tained in standard fashion from the quadratic term in the
expansion of log Z[ ;] in terms of the sources j(¢):

% &ZI1/
(£)g(0)) =
(a(t)g Z [0] 8i(1)8(0) |;=0

—if (™ ek
= dk ——— |
2 f_m k?— w*—ie

(4.2)

This is indeed the same as in Eq. (2.17), including the ie
prescription. From the derivation of (2.17) it can be seen
that the ie prescription determines the 8(¢) functions neces-
sary for obtaining the correct time ordering of the product
3(1)4(0).

In contradistinction to this, the description of the sys-
tem in a negative-norm Hilbert space is recovered from the
path integral

Z[j1=(0T~ (0T~ — «)

=1lim | Dg(z) exp—f-f ( - qu +J"]> dt,
€10 ﬁ — 2
(4.3)

where the domain of integration of g (¢) is now from — i to

+ i . The reason for this is, that in the negative-norm space
the operators § have imaginary eigenvalues.”' Here the ie
prescription indicates convergence of the integrals for
Im w<0. It agrees with the time ordering in the canonical
treatment (2.25), as follows from the two-point function:

#_ 8ZLJj]
1q(0)) = —
(q(1)q(0)) Z [0] §(1)8j(0) ;-0
# w e~ikt
_ i . 4.4
2” . kz_.a)2+l-e ( )

Comparison with the expression (2.25) shows this to be cor-
rect indeed.

V.NONCOMPACT o MODELS

In the previous sections we have shown that there are
two alternative methods of quantizing theories with non-

1424 J. Math. Phys., Vol. 28, No. 6, June 1987

compact symmetries, differing in the way the noncompact
symmetry is realized in the spectrum. Now we must deter-
mine which quantization procedure to follow in actual phys-
ical theories. For Maxwell’s theory of the electromagnetic
field or the theory of the relativistic string the noncompact
symmetry involved is Lorentz invariance. Because this sym-
metry is not broken, these theories must be quantized in a
Hilbert space with indefinite metric. This leads to the stan-
dard Gupta—Bleuler formulation of quantum electrodynam-
ics.??

The situation is different in the case of noncompact o
models. Below we present a number of arguments showing
that in these theories the noncompact symmetry is broken
(in the sense of Sec. III). Therefore we are forced to con-
clude that the quantum description requires one to work
with an extended Hilbert space having positive-definite met-
ric and negative-energy states.

An explicit proof of this statement can be given for a
number of exactly solvable models. The first of these is the
nonlinear O(1,1) model. This model is a nonlinear counter-
part of the model that was briefly discussed in its (0 + 1)-
dimensional version in Sec. III. In line with the general dis-
cussion of nonlinear O(N,1) models in Egs. (1.6)—(1.12) it
is defined by the Lagrangian

& =1d,0)* —4(d,m?*,
with the constraint

o —m=1/g>0. (5.2)
One may now proceed to solve the constraint asin Eq. (1.8),
in terms of a single scalar field ¢:
e ot 1T
VI—gp? Vg J1—gg?

L= (8ﬂ¢)2/(1 —gp?)?.
This is invariant under the nonlinear Abelian transforma-
tions

Sp = (1/Jg)b(1 —gp?) . (5.4)

However, in this case there exists a more convenient parame-
trization of the model, using a scalar field ¢ defined by

(5.1)

w =

(5.3)

7= (1/Jg)sinh(Yg#), o= (1/Jg)cosh(gd).  (5.5)
In terms of this field ¢ the Lagrangian becomes
L= — 43,9, (5.6)

Thus the theory describes a single real, massless scalar field,
and is invariant under nonlinear O(1,1) transformations of
the form

-3 ' =d+7,

where 77 is a constant.

The importance of this result is, that the spectrum of a
massless field is well known to be continuous. In particular,
there is no normalizable ground state. This may be checked
directly, by enclosing the system in a box of finite dimension
L and decomposing the field into plane waves:

(5.7)

Fx) = T G (N 9E=0 . (5.8)

kez?

The Hamiltonian separates into a direct sum of Hamilto-
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nians for the modes (5.8). Correspondingly, the wave func-
tion factorizes into an infinite product of wave functions, one
for each mode. For all the modes with space momentum
k#0, the Hamiltonian is that of a harmonic oscillator with
frequency w, = (2#/L)|k|. Thus these modes have norma-
lizable wave functions %, . For the zero mode &, the Hamil-
tonian is that of a free, nonrelativistic particle in one dimen-
sion. Its eigenstates are plane waves, which are not
normalizable. To get normalizable states, we have to form
wave packets by linear superposition of the zero modes.
Therefore the wave function for the free, massless scalar field
has the form

Vo= [ dac@en [[wla], 69
— o k0

where
—l—f dajc(a)]*=1.
27 J - »

The nonlinear O(1,1) transformation (5.7) shifts the
zero mode by 7, but does not affect the other modes:

5%, =m; 6% =0, k#0. (5.10)

The result of this transformation on the wave function (5.9)
is that all ¢(a) are multiplied by a phase factor exp(ian).
This is a unitary transformation, preserving the normaliza-
tion, but changing the form of the superposition and hence
the state of the system. In fact, the plane wave basis for the
zero modes is an infinite-dimensional unitary representation
of the Abelian O(1,1) group. Therefore we have no normali-
zable O(1,1)-invariant ground state for the nonlinear
0(1,1) model.

The conclusion arrived at for the Abelian O(1,1) model
also holds for the non-Abelian O(XN,1) models. This has
been proved in detail for the O(3,1) model in (0 + 1) di-
mensions by Velo and Wess,® and for the supersymmetric
0(2,1) model in (0 + 1) dimensions by Davis et al.> In this
last model there are in fact normalizable ground states with
energy zero, separated by a finite energy gap from the rest of
the spectrum, which is purely continuous. However, these
zero energy states form two infinite-dimensional discrete se-
ries, which are unitary representations of 0(2,1) (Refs. 23,
24). Therefore there is still no 0(2,1) invariant vacuum.
Such discrete series arise in fact for all supersymmetric
O(N,1) models with N even.* Therefore none of these mod-
els possesses an O(,1) invariant vacuum. That this situa-
tion generalizes to the case of the supersymmetric O(N,1)
field theories in (d + 1) dimensions (d>1) is shown by us-
ing Wittens index theorem.”®

Before proceeding to discuss more general arguments
indicating the breaking of the noncompact symmetry in the
nonlinear O(N,1) models, we would like to return once
more to the O(1,1) model and discuss the construction of its
Hilbert space of states in the formalism with constraints, as
in (5.1) and (5.2). We consider the model in (0 + 1) dimen-
sions for simplicity, but this restriction is not essential. Be-
fore imposing the constraint, the wave functions of the sys-
tem in the extended Hilbert space with positive-definite
metric (and negative energies) are
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EJ‘ Eﬂ.c(a,n)ei(a"’”a) . (5.11)

Y(oym) = J

’ —w 2T w 21
We can now impose the constraint (5.2) as a constraint on
the wave functions

(0 — 7 — (I/g)W(om) =0. (5.12)

This constraint is satisfied if the Fourier coefficients c(a,7)
satisfy the (1 4 1)-dimensional Klein—-Gordon equation:

(=92 +3%—1/8)c(am) =0. (5.13)
The solutions of this equation are of the form

clam) = Jw afﬂ'J‘Dc do 8(0® — m — (1/g))

— i(am — no)

(5.14)

Taking 7 = O this reduces to the plane wave basis (5.9).
Thus we can indeed obtain the correct physical states by
imposing the constraint (5.2) on the states of the extended
Hilbert space with positive-definite metric and negative-en-
ergy modes.

With the nonlinear transformation law of the physical
fields under the O(N,1) transformations (1.12), it is actual-
ly not surprising, that the O(N,1) symmetry is broken to its
compact O(N) subgroup in the quantum nonlinear o mod-
els. Assuming the quantum theory to exist, it follows from
the Goldstone theorem. Denoting the compact O(J) gener-
ators by R, and the remaining noncompact ones by V, we can
show that the vacuum expectation value of the massless
physical fields (g, ) vanishes because of the O(X) invariance
of the vacuum. Consider an infinitesimal O(N) transforma-
tion of {g; }:

S(R){@;) = a,{g;) = (O|[R(a),p;]|0) =0. (5.15)
The vanishing of this expression follows, since the compact
O(N) symmetry of the vacuum may safely be assumed in the

absence of a symmetry breaking potential. However, for a
transformation in a noncompact direction we obtain

S(NY{(@;) = (O] [N(5),9:]10)

= (1/V8)b; (6, +g[6,{pi) — 2@ ]) -
(5.16)

X@(o,m)e

For N>2 the right-hand side cannot vanish, proving that the
vacuum cannot be invariant under these transformations.
For N = 1 we have already proved the nonexistence of an
invariant vacuum. We conclude that, provided the quantum
theory is well defined, the vacuum of the nonlinear O(N,1) o
model is not invariant under the noncompact symmetries.
Finally we briefly consider the constraint (1.7). Taking
vacuum expectation values on both sides of the equation, we
get after proper renormalization:

<02>ren - <Tr2>ren = 1/gren >0 . (517)

If the renormalized coupling constant is positive (and fin-
ite), we are forced to conclude that

(0 een 4T aNd (07), >0 (5.18)

The first condition can be avoided only if both vacuum ex-
pectation values become infinite:

(<02)ren’<“2>ren ) —> 0 .
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This possibility is presumably realized in the (1 + 1)-di-
mensional models,*'° since for d = 1 no properly massless
scalars exist.”* However, for d>2, model calculations and
the analysis of the O(1,1) model above indicate that the
vacuum expectation values are finite**!' and the conditions
(5.18) must be satisfied. Again we are led to conclude that
the O(N,1) symmetry is broken.

The arguments presented above indicate, that for the
noncompact nonlinear ¢ models the quantization in an ex-
tended Hilbert space for constrained fields (o,m) should
proceed with positive norm, but negative-energy states for
the unphysical degrees of freedom o. The energy of the full
theory is nevertheless bounded below, because the constraint
(1.7) [(5.2)] guarantees, that the excitation of negative-
energy states can only take place, if simultaneously suffi-
ciently many positive-energy modes of the  fields are excit-
ed as well.

VI. A MODEL COMPUTATION

The conclusion of Sec. V, that in the formulation with
constraints noncompact o models are to be quantized using a
positive-definite Hilbert space with negative-energy states
for the unphysical degrees of freedom, implies that the free
propagators of the fields (o,m) used in perturbation theory
take the form

dnk ik-x
(o(x)a(0)) = —f - — ¢ —
2m)"i k*°+ m* + e
) (6.1)
dnk elk'.x

{m (I(0) =8, Qm)ni kP 4+m?—ie’

where n denotes the dimensionality of space-time; cf. Eqs.
(2.17) and (4.2). In this section we show that this prescrip-
tion leads to correct results in a simple toy-model computa-
tion. Although this model is strongly simplified, we believe it
has all the necessary features to test the analytic continu-
ation of m? implicit in Eqs. (6.1), as it appears for example in
path integrals of the type (4.1) and (4.3). Instead of these
infinite-dimensional integrals, we consider the ordinary
double integral

Z_ (M?,m§)=r dwfw daa(ﬂl_oz+i)

b4
Xe‘(i/l)(m%r’vm%o—") , (6.2)
where for definiteness we choose m3 >m? >0 and g > 0. This
is a zero-dimensional version of the nonlinear O(1,1) model,
with an additional O(1,1) breaking for m} % m? . Inspection
of the integral shows it to be well defined for Im m3 <Im m3.
The integral can be evaluated directly by first carrying out

the integration over o; this eliminates the § function:
J

(ir2y (m} — mi)a®

3 im3 = e
Z_ (mim}) =2/ge z/zgf dmr
0 V1 +g;’

(6.3)
It is convenient to redefine the parameters as follows:
*=(1/4g) (m} + md),

K (174g) (m; 3) (6.4)

o= (1/4g)(m} —m}), s=1+2gr*.
Then

Z_ (mf,mﬁ):ei“lf ds— (6.5)

1 s —1

This integral is defined for Im >0 (@ #0) and all complex
values of u?, in agreement with the complex domains of
m?,m3. The result of (6.5) is a Hankel function of the first
kind:

Z_ (mim3) = (in/2)e" H P (w) . (6.6)

Of course, the Hankel function can be defined in the whole
complex o plane, but the integral representation (6.6) exists
only for Im w>0 (Ref. 24).

It is instructive to compare this result with the compact
0O(2) version of this integral:

Z, (m%,m%)

= J dﬁj da5(02+7rz— i)
— o0 — oo g

Xexp( - é(mffrz + m%al))

— 2Jge "% fl/\’.g dm exp[ (i/2) (m3 —mi)m’]

0 V1 —g7?

(6.7)
which exists for all complex values of m3 ,m3. With u” and
asin (6.4) and taking

s= —142gm,
the integral (6.7) becomes

+1 eiw:

Z., (m>m’ :e_i"IJ‘ ds ———. (6.8)
- (o) - JT-F

In contrast to (6.5), this integral is indeed well defined for all

complex values of w. It is an integral representation of the

Bessel function of order zero:
Z, (mimi)=me (o). (6.9)

In actual quantum-field theoretical models, the path inte-
grals usually cannot be evaluated directly and one must take
recourse to perturbation theory. The constraint for (o,m) is
then imposed using a Lagrange multiplier .. For the integral
(6.2) such a formulation is obtained by substitution of the
Fourier representation of the 6 function:

Z?(mf,mﬁ):j dﬂf daj d—aexp[——i—[m%ﬂ'z——mial+a(1rz—al+i)”
— o — o 47 2 g

:J dﬂ'f daj d—aexp{—L[(mf—}—a)ﬁz—(mg-ka)gz.;_ﬁ”_
— oo — — o0 47T 2 g

(6.10)

The perturbation theory treatment is obtained by interchanging the order of integration, allowing the integrations over (o,7)
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to be performed first and that over a afterwards. For the integral (6.10) this interchange is allowed for Im m?<0 and

Im m3 >0, and gives
Z_ (m%,mﬁ):J -diex( i
—w 4 2g
exp( — ia/2g)

=ifm da .
20« J(m +a)(m] +a)

Now define
t= —((a/28) + 1.
Then

Z_ (m},m3}) =—1——e"“2f d—2
R -

—

(6.12)

A similar treatment of the compact model (6.7) requires
Im m? <0, Im m2 <0. In order to show that this reduces to
the form (6.5), we must take care of the multivaluedness of
the square root, and deal with the singularities at = 4 w.
The square root becomes single valued if we make cuts along
the half-lines [, ) and ( — «, — w]. For Imw >0 the
integration does not encounter the cuts (Fig. 1). In the limit
Im w-»0, the path of integration passes along the upper edge
of thecut ( — 0, — @] and the lower edge of the cut [w, c0 ).
Now consider the contour C of Fig. 2. Since there are no
singularities inside the contour, we have

ff>dz__i_—=o. (6.13)
c -0

In the limit R — oo the part of the integral along the semicir-
cular arc vanishes. Therefore

Re it @ + i Im o it
e e
f dt ——— = — dt—2
— ﬁtz—a)z Rew=w—ilme 1¢t2_w2

o + 2iImew it
e
_f df ————

w+ilmae t“—w

(6.14)

Hence the contour of Fig. 1 may be deformed to pass along
the upper and lower edges of the cut [w, o), as in Fig. 3.
Finally, the two parts above and below the cut contribute
equal amounts, because the change in sign of the square root
is balanced by the reversal of the direction of the path. The
final result is therefore

- W

FIG. 1. Path of integration in complex ¢ plane for Eq. (6.12).
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pl — ——){fjw dfrjjw daexp(— —;—[("lf +a)m — (m} +a)0’2])]

(6.11)

@ it
Z_ (mtml) =e"‘"f dr—
o IT—?

=e"ﬂff ds ———. (6.15)
1 V¥ —1

Thus the result (6.5) is reproduced and the representation of
the integral by (6.11) is correct with Im m? <0, Im m3 >O0.
Writing explicitly the real and imaginary parts as
m;, —mj, + i€, ,, we can replace (6.11) in the limit €, , 10
(such that the logarithm is single valued) by

* da ia
Z_ (m3>m? =J ——ex(———)
(mim) =] 4 &P\~ 5

X (exp( — % In(m} + a — ie,)

— —;—ln(mg +a+f€2))} . (6.16)

This is the form that, generalized to higher-dimensional
models, is the starting point for a perturbative analysis. It is
now straightforward to establish the results

()= —2i

Z_ (i =<__L-—> ,
(rmimz ) mi4a+iel/,

—f > . (6.17)

m3

. d 2 2y

() 2!5mfz_ (rmim3) <m% +a— i€
which are identical to Egs. (6.1) for n = 0. It is obvious that
the replacement of (7,0) by fields (7 (x),0(x)) and m? , by
differential operators 3, + m?, does not alter these results.
Hence the analytic continuation chosen for the propagators
in Eq. (6.1) is consistent for the noncompact models and
leads to a correct perturbative treatment of the quantum
field theory,'! provided that this theory is well defined.

FIG. 2. Closed contour in z plane, Eq. (6.13).
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FIG. 3. Equivalent path of integration in ¢ plane for Z _ (m?,m3).

VH. DISCUSSION

The argument presented in this paper may be summar-
ized as follows. There exist two different quantization
schemes for field theories with noncompact symmetry of the
kinetic energy operator: one with the noncompact symmetry
broken, but a positive-definite Hilbert space and one with the
noncompact symmetry not broken, but being realized in a
Hilbert space of indefinite metric. It is argued from the ex-
amples of some explicitly solvable models that in nonlinear o
models with noncompact symmetry the noncompact sym-
metry is broken in the sense that there is no invariant vacu-
um state, even though the charges of the noncompact sym-
metry are conserved. The general validity of this result in
nonlinear ¢ models is supported by other, more model-inde-
pendent arguments. From this it is inferred that the quanti-
zation of the linearized formulation of such theories in an
extended Hilbert space with constraints requires the use of a
positive-definite Hilbert space with negative-energy modes
for the unphysical degrees of freedom.

The question of whether such a quantization is consis-
tent with causality and stability is far from obvious. As we
have argued in Secs. I and V, the constraint (1.7) [(5.2)] is
crucial in establishing the boundedness of the Hamiltonian
and therefore it must necessarily be conserved in the full
quantum theory. This requires the quantum theory includ-
ing the constraint to be renormalizable, since otherwise
counterterms might modify the constraint in such a way that
the negative-energy modes can no longer be removed from
the theory. Obviously, the renormalization must be carried
out very carefully; for example, mixing bare and renormal-
ized quantities in the analysis may easily lead to inconsisten-
cies.'?

Most studies have been done on (0 + 1)-and (1 + 1)-
dimensional models. The d = 0 models can be solved exactly
and confirm the analysis presented here.>*® In d = 1 exact
results can be obtained in the large-N limit of O(N,1) and
noncompact CP(XN,1) models.**"'2 However, in this case
the precise quantization of the negative-energy modes is not
so important, because most of its contributions disappear in
the limit N oo . Nevertheless, negative-metric quantization
has been shown to give rise to certain inconsistencies. ' Also,
as explained in Sec. V, the behavior of the noncompact mod-
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elsind = 1is somewhat peculiar*'® because of the problems
with infrared divergences for massless scalars.?

In (3 + 1) dimensions a study has been made of the
SU(1,1)/U(1) nonlinear ¢ model,'' which describes the
scalar sector of N = 4 supergravity.'> The model has been
analyzed at the one-loop level using the positive metric quan-
tization. At this level it was shown to be renormalizable,
with the energy bounded below. "' These results can in fact be
extended to the case of SU(N,N)/SU(N) X SU(N) X U(1)
models. However, it is not known what happens when one
includes higher loop contributions. Some arguments against
consistency of the models at higher loops were coined by the
authors of Ref. 12, but we believe their arguments to be in-
conclusive (Ref. 26). In particular, the derivation of cutting
rules and the conditions of unitarity are modified by the use
of negative-energy modes, since their propagator has a non-
standard analytic continuation. Also, in the context of N-
extended supergravity, it is known that the models are finite
to two loops in perturbation theory.?” Thus it seems that any
inconsistencies are suppressed, at least till the next order of
computation. This may be particularly relevant for gauged
N = 8 supergravity,”® where the dynamical generation of
composite SU(8) gauge bosons may be possible by the
mechanism of Ref. 11. This would greatly improve the phen-
omenological prospects for this theory as a unified model of
electro-weak, strong, and gravitational interactions.
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A class of non-Markovian stochastic processes is defined; it generalizes several anterior
models, and allows a trajectorial description of collisions in dense fluids when the system loses
all memory at each collision. The abstract formalism is studied here: an integral evolution
equation is derived, as well as an integrodifferential equation that generalizes the master
equation; some asymptotic properties of these processes are established. Applications to

specific models will be treated in other articles.

I. INTRODUCTION

Several authors!? have recently developed stochastic
models to describe the molecular relaxation and chemical
reactions in a fluid. In most of these models the intermolecu-
lar potentials are supposed to have a very short range, com-
pared to the average distance between two molecules (long
range potentials may be simulated, in many cases, by mean
field potential>® and are not considered explicitly here).
Then the interaction of a molecule, or of a reacting complex,
with the other particles of the fluid may be represented as a
collision localized in time and space; between two collisions,
the molecule undergoes a determinist evolution under the
influence of the external field, or effective external field.

Naturally, an exact probabilistic description of the fluid
is obtained formally by applying the Liouville theorem to the
complete density function, and writing the well-known hier-
archy of equations for the reduced probability densities.
However, this method does not yield explicit results easily,
except in the case of the Boltzmann approximation, where
multiple collisions are neglected.

Another method is to consider the evolution of a test
molecule as a perturbation of its deterministic evolution un-
der the action of collisions with other particles, represented
as stochastic events; if the distribution laws in time and
phase space of these collisions may be determined a priori
then it is generally not difficult to study the stochastic evolu-
tion of the molecule. Although this approach is less satisfy-
ing from a theoretical point of view, since it implies a heuris-
tic evaluation of the collision laws, it yields a simple
description of the fluid and permits us to integrate experi-
mental data or semiempirical deductions; furthermore, it ap-
pears to be very convenient for numerical simulation,>* and
has given valuable results in the theory of chemical reactivity
in liquid phase. Thus it seems interesting to extend the valid-
ity of this method. In the works published on the subject,>*
three main assumptions are generally made: the collisions
are instantaneous; the collision times of the test molecule are
exponentially distributed: the collision rate at any time does
not depend on the past collisions, nor on the state of the
molecule; and in a collision the transition probabilities only
depend on the initial and final states.
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Of course these assumptions are related to the funda-
mental hypothesis that the evolution of the test molecule
may be represented by a Markov process. However, it is
clear that they can only be justified approximately and in
special conditions; in particular, they are not appropriate in
the case of a liquid medium: then, and generally, the evolu-
tion of the molecule is non-Markovian and cannot be treated
by a standard formalism.

The difficulty is to define non-Markovian processes
which are powerful enough to represent the physical phe-
nomena, at least schematically, and not too general in order
to be of practical use. For this purpose it is often assumed
that the processes obey a generalized Langevin equation,®’
as it may be shown in the linear response approximation: but
the memory function is hardly obtained from the first princi-
ples, and it must generally be approximated by a truncated
continued fraction expansion, where the few generalized
friction coefficients are chosen in order to fit experimental
data, which is not very satisfying from a conceptual point of
view. Among the various non-Markovian processes intro-
duced by previous authors one may quote the semi-Markov
processes defined by Feller® or the generalized random-walk
processes used by Kenkre, Montroll, and Shlesinger®; the
most interesting for physical purposes seems to be the com-
posite stochastic processes studied by van Kampen'?; how-
ever, their definition is not wide enough to be applied to the
modelization of chemical reactions. Thus, using the math-
ematical formalism of stochastic processes, we introduced!?
the so-called collision processes which give a convenient
generalization of the anterior works. Here we present this
class of processes in a more physical way and study their
main properties. Applications to reactional microdynamics
are given in another paper.'?

Il. NON-MARKOVIAN COLLISION PROCESSES
A. The model

We consider a system, which may be a test molecule or
group of molecules (a reacting complex, for instance) evolv-
ing under the action of internal and external forces. We as-
sume that this evolution suffers different phases, labeled by
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the index € running from 0 to m, which will be called “re-
gimes”; for instance, regime O may be the free evolution of
the system, or the evolution in an external field between two
collisions; regime 1 may be the evolution during a collision
with a particle of kind 1, etc. More generally € could be an
element of a countable set = (or even of an uncountable set;
but we will not consider such a general case in order to avoid
technical difficulties which are unnecessary for application
to concrete models).

During regime €, the instantaneous state of the system is
represented by an element of a probability space E. which
may depend on €. Generally E, is a n-dimensional Euclidean
space R " or a discrete set, or a manifold, and its dimension or
its structure may change with ¢; then the system is described
at time ¢ by a n-dimensional random vector X, and its prob-
ability law is defined by its probability density p, (x,t),
x€R ", or more generally by the probability measure P, (4,7)
which gives the probability to find the system at time ¢ in
some subset 4 of E,. We have given in Ref. 12 three examples
modelizing chemical reactions in the presence of a solvent.
In one of these examples, the state space E. can be either one
point space (for example a bound state), or a spatial interval
with two velocities to take into account the diffusion on the
top of a barrier potential.

Whatever may be the physical interpretation of regimes
and state spaces, our fundamental hypothesis will be that the
process keeps no memory of the events prior to the beginning of
a regime, specified by its initial time and initial state. This is
of course a kind of partial Markov property and does not
correspond to general non-Markov processes; however, it
allows for nonexponential waiting times and is sufficient in
many problems. The same hypothesis was made by van
Kampen in defining the composite stochastic process, '° with
more restrictive conditions. Now it is necessary to specify
the description of this class of processes.

B. Evolution during a regime

Under regime € the evolution of the system is a Markov
process with an infinitesimal operator L, (x),

%pe(x’t)st(x)Pe(x,t), (1)

where L_(x) is a linear operator acting on the x variables
only, satisfying the condition

J-dee(x)pe(x,t) =0, (2)

which can be written in the integral form

L. (x)p.(xt) = f dx' K, (x|x";t) p.(x',t) , (3
with
fdx K (x|x';ty=0. 4)

For a stationary continuous process with transition rate
W, (x'|x) from state x to state x’,
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L (x)p (x,0) :de’ W, (x|x") p.(x',t)

—p.(x,1) de’ W, (x'|x), (5)

which can be written in the integral form (3) with the kernel
K (x|x') =W (x|x') —6(x —x") fdx” W (x"|x") .

(6)

In the case of a deterministic process with conjugated co-
ordinates x = {g;, p,} and Hamiltonian H, (x), L. (x) is of
course the Lagrangian operator

JH, 3 JH, 3
Lf(x)pe(x,t)Zz( —-——————)pe(x,t)
T\ dg; dp; Ip; Iy,
N
corresponding to the integral kernel,
JH d
K (x|x) = < 6(p, —p) =6, —q))
(’)Z(ap,» ppaq;q q
JH J
———8(q, —q;) —8(p; — f))- (8)
9q; 1 ! dp; b

C. Evolution of the regime ¢

This evolution contains all the (possibly) non-Marko-
vian behavior of the system. It is well known'? that when the
successive regimes €, €,,... constitute a Markov chain with
an exponentially distributed pausing time between two
changes, the process €(t) is Markovian, since for ¢ > t,, €(¢)
is independent of the events preceding f once €(#,) is known.
Conformally with the fundamental hypothesis, we assume
that once the state x, is known at the beginning ¢, of a regime
€,, the process {€(¢),X(¢)} at further times ¢ > ¢, is indepen-
dent of the events preceding #,: this is not true if ¢, is not the
beginning of the regime ¢, (unless the pausing time in €, is
exponentially distributed) so that the process is generally
non-Markovian.

In our formalism the changes of regime are instanta-
neous; let C(¢€,) be the first regime following €y, and T . the
duration of regime €, when C(€,) = €,: if €, begins at time ¢
and is changed into €, at time ¢,, then 7, = ¢, — #;; then a
stochastic variable T, may be defined for any regime € by
taking T, = oo if €e#C(¢;) = €,. We leave the possibility
of having C(¢,) = €,, since the transition €,— €, may be de-
fined (for instance it may account for instantaneous elastic
collisions); in other cases we take T, . = oo. Since the evo-
lution of X(¢) under regime ¢, is specified by the infinitesi-
mal operator L, , the whole process {€(7),X(#)} is com-
pletely determined after the beginning 7, of regime €, by
giving the laws of T, for any €, and the law of change of the
state in the transition €, — €,. Of course, these laws are condi-
tioned by the initial values €(z,) = €,, x(#,) = X,, and can be
interdependent.

We now assume the following.

(i) The laws of T, and C(€,) only depend on ¢, on &,
and on the invariants of the evolution under the action of L
[the fact that these laws depend only on these quantities will
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be explicitly used in the derivation of (Eq. 29) ]. These laws
are specified by

A, (t]x0,ty) = Prob(inf T, >t — to|X0,t0.€0) 9

(which is the conditional probability of having no transition
in the time interval ]#.,¢]), and by
Lo, (16,2 [x0,%)
= Prob(T, . =1t — €]t —t,,t" — 1],
C(€;) = €,|Xg,t05€0) (10)

(which is the conditional probability that the first transition
after £, occurs in the time internal J#,¢’] (f,<t<t’) and
yields the regime €,). We shall also use the corresponding
density ¥, . (¢ |Xq.t0),

FE.EO (dt "xO’tO) Ere,s(, ( ]t’t + dt ] I-xOyt)

= ye.eo (t IXO!tO)dt . (10’)

(ii) If the state of the system is x;” €E, at the end #, of
regime €, [X(¢; — 0) = x;” ], the state X(#,) at the begin-
ning of the next regime ¢, is an element of £, which is inde-
pendent of all other events before ¢;; thus the effect of the
transition is specified by the transition probability

Y, . (A4]x;7,t;) =Prob (X(¢,) = x,ed |[X(t;, —0) = x;
(11)

(where A is a subset of the phase space E, ) or by the corre-
sponding density y. . (x,|x;",¢;),

a transition €,— €, occurs at ¢,)

(1r’)
In some cases X(¢;) may be determined unambiguously
from x;~ by a mapping fof E_ into E_,

X(t;) = f(x] ) with probability 1;
then y, . is obviously a § function. In particular E, may be

identical to E,_ , with X(¢;) = x|~ if the transition does not
change the state of the system.

Ye,eﬂ (d‘xllxl_ !tl) =ye|eo (xllxl_ ’tl)dxl .

D. Compound transition probabilities

Our main purpose is to find the conditional probability
P, (A,t]x0,1,) that the system be at time 7 under regime €
and in some state x of the subset A of the phase space E,,
knowing that a transition has occurred at time #, yielding
regime €, and state x,€F, ,

Peeo (At Ixo,to) = Prob(X(t) = x€4,
e(t) =E|X(t0) = Xg

€(t,) = €; a transition occurs at £} .
(12)

Here ¢ is any time posterior to #, and not necessarily a colli-
sion time.

This conditional probability may be computed from the
following two basic quantities, which we call compound
transition probabilities.

(a) The first is the conditional probability
®,, (4,t |x,,t,) that no transition occurs in the time interval
]#5,t] and that the state X(¢) = x at time ¢ belongs to the
subset 4 of the phase space E_,
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0, (4,2 |xp,t)

= Prob(x(t) = xed, inf T, >t — to|xot065) . (13)

(b) The other is the conditional probability
@, (4,1t,"]]x0,2,) that the first transition after 7, occurs at
some epoch ¢, of the time interval ]z,t '] (#,<¢t, <t’), leading
to the regime €, and to some state x, belonging to the subset 4
of the phase space E, ,

q’e‘s(, (As]tyt ’] |X0,t0)
= Prob(X(¢;) = x,€4 ;

T.. =t —t,elt —tyt" —1,];

€€

C(€&p) = €] Xgt0sE0) - (14)

Although these two quantities ®, and &, . may possibly be
defined in more general situations, we shall restrict ourselves
to the particular case described by the hypotheses (i) and
(ii) settled in 2.3: then the pausing time in regime €, does not
depend on the state evolution during €,, and we have

O, (At |xp,t0) = A, (2 |Xputo) P, (At [X00t0) (15)
where A_ (¢ |x,,1), defined by (9), specifies the pausing time
in €y and P, (A,f |x,,t,) is the transition probability from
state x, at time 7, under regime €,. Furthermore,
cDe,so (A’dtl |x0’t0)

= f Y (A|x7 0L (dt|x0,t0) P, (dx [t |x0,t0)

(16)

where @, . and Y, . are defined by (10) and (11).
We shall also use the densities 6, and @, . correspond-
ingto ®_ and ®, . when they exist,

O, (%t [xpt0) = A, (t |X0,t5) Pe, (X,2 | X0,80) s 7

Pee, (X158, [Xosto) = f dx; ye . (x, X1t YWee, (11 [Xonto)

X Pe, (X158 |x0,t0) - (18)

Clearly the quantities @ and @ are not independent. As a
matter of fact it results from definitions (13) and (14) that

O, (E. .t [xol0) + Y P o, (B, 110t 1|x0st0) =1, (19)
since the second term on the left-hand side is the conditional
probability that a first transition after #, occurs before or at 7.
With the expressions (15) and (16) for ® and 9, this rela-
tion becomes

Ae‘, (t 'xmto) + 2 I‘e,eb(]tmt ] IXO’tO) =1

€,
with the same interpretation.

Clearly O®(E,, [xo,2y) or A, (t[xe.t,) cannot increase
with ¢. From now on we shall assume that these quantities
tend to O when ¢ — o0, that is to say, for any initial regime and
state, at least one transition will almost surely occur; in this
case

O, (B, |x0t0) = A, (0 |xpt,) =0. (20)

Although the statement of the previous definitions and hy-
potheses has been somewhat lengthy, it is now easy to obtain

(199
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the evolution equation of the conditional probability
P (At |xt).

. EVOLUTION EQUATIONS OF THE SYSTEM
A. Fundamental evolution equation

We want to obtain an evolution equation for the proba-
bilities P_. (4, |xpt,). We divide the set of trajectories
starting from x,, in regime €, at time ¢, (just after a collision
has occurred) and arriving in the subset 4 of E, in regime €
at time ¢, into two subclasses.

(1) The first subset is the set of trajectories that do not
suffer any collision and thus do not change the regime in the
time interval ]#,,¢] so that in particular €(¢) = €,; this means
that Inf, 7 >t — #, and by Ref. 9, this subset of trajec-
tories has the probability

O, (4.t |x0,t0)8,, - 21)

(2) The second subset is the set of trajectories suffering
at least one collision in the time interval ]¢,,¢]; if #,€]¢,t ]
denotes the first collision time occurring in this interval,
then the probability that the trajectories change their regime
from €; to €, at a first collision in the time interval
1¢1,t, + dt,], and are found in the volume element dx, in E,,
just after the collision, is @, . (dx,,dt,|x,,t,). After that col-
lision, the process follows independently and has probability
P (A, |x,,t;) togofrom (x,,t,) to (4,t) (because, precise-
ly, ¢, is a collision time). The probability of this subset is then
the sum over all these possibilities,

f z f P (At |x, )P, . (dx,,dt;|xt,) .
t€lty,t] €, Jx{ €E,

(219
Thus P satisfies the integral equation obtained by adding the
contribution (21) and (21'),

P (At|xpt) = O, (A, |xpt) 8,

+ f J P (At |x,t,)
€ t€ltyt ] x,eEE'

Xq)e,e(, (dxlydtlixmto) ’ (22)
and the conditional density p satisfies
pse,, (A’t |x09t())
t
=0, (Xt [Xp2)0,c, + Z J- dt, fdx,
€ &
X Pee, (X, |x52,) Pe.e, (xptllxo,to) . (23)

Equations (22) and (23) are the fundamental evolution

at,

d _
—peea (x’t |x0’t0) = Ae,, (t IXO’tO) pe(, (x’t |x0’t0)Leo (xo)aeen +

equations under their integral form. It is seen that they are
“backward” equations, since the operator of the right-hand
side acts on the initial values €,, x,, #, only.

Remark: This is a generalized version of a renewal equa-
tion [see (18)] but with memory and nonidentical laws.

B. Integrodifferential evolution equation

In order to compare the evolution equation of our pro-
cesses with the usual master equation of Markov processes,
we derive Eq. (23) with respect to the initial time ¢, and
obtain

J
— Fee (x’t X $t )
3t0p o [Xo:to
P ¢
=——0,, (%t |X0,00)0c, + > | dty f dx,
ato & Y
a
X Pee, (x,2 |x1’t1) = Pee (xl’tllxmto)
at,

- zfdxlpes, (%2 |X1,t0) Pe e, (X1stolXosto) - (24)

Now we use the expressions (17) and (18) of @ and ¢,

0., (x,t |xp,t0) = A, (2 |Xooto) Pe, (Xt [X0sto) (25)
Pee, (X121 [X0st0) = J'dxf Ve, (X1]%7581)8 ¢,
X (1|X0st0) Pe, (X1 5111 X0:t0) - (26)

We notice that under regime €,, the evolution equation (1)
implies the forward equation,

ad
— P, (X:t |x0,20) =L (x) p., (X, [Xpoto) 27)

at

whereas the backward equation (which is more convenient
mathematically, see Ref. 13) reads

a + ,
S Pe (6t [xgite) = Pe, (Xt |X0,t0) L, (Xo) (27)

(4]

where Zeo (x,) operates on the left, on variable x,; ZEO is the
opposite of the adjoint L X of L_,

L,=—L*.

€ (28)
Since Ay(# |xo.2,) (the probability that no transition occurs
before ) and ¥, . (¢;|xp2,)dt, (the probability that the first
transition occurs in dt, and leads to €,) only depend on x,

through the evolution constants, we have, for instance,

(6., pe )L, =6, (p.L.) .
Then Eq. (24) becomes

a
v Ae" (t |x0’t0) psn (x!t |x0’t0)6eel,
at,

+ [Z J dt, fdxl dxX;" Pee, (Xt | 1,21) Yee (x|x )0, (1\|x0st0) Pe, (X1 ,t1|xot0)]z€0 (x0)

0

+ zf dar, J’dxl dx;” Pee, (Xt X1 11) Yoo, (X1|%17511)
€, Vi,

]

- 2 f dx; P, (X2 |X1,t1) Pe e, (X1580]X0st0) -

1433 J. Math. Phys., Vol. 28, No. 6, June 1987

9

Vereo (L1 X0rt0) Pe, (X1 511|X0st0)
oty

(29)
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Using the integral equation (23), it is seen that the first and third term on the right-hand side sum up to give p, L., .
Furthermore, the second term may be expressed in function of p,, by using (23) again, if A_ '(d /dt) A, is finite. Then (29)

can be written

at,

a — _, d
= Pee, (X:t |X0:20) = Pec, (X [X0sto) L, (X0) — Pee, (X [X0sl) AL, ! N A, (X, [X0,t))

o]

_ Zfdxlpeel (X2 |X1,20) Ve ey (X1 X0s20) Vere, (LolXonte) + z dt, del dx; p.. (x,t]x,t))

X Yere, (X11X7T 8D N, o (L] X0ul0) P, (X1 581 X0s00)

with
ad 1
N (64 [X0,t0) = E“ Ve, (11 |Xosto) — Vee, (1 !xo,to)Ae,,
o

d
X — A (£ |x0,t) -
ot , (2 ]x0,0)

¢]

(3D

This is the generalized evolution equation of the process. It is
not a master equation in the usual sense since the
Dee, (X,t |Xo,to) are not transition probabilities (remember
that ¢, is a time of “collision,” or of a change of regime, and
not any time). Only the fourth term on the right-hand side of
(30) contains a memory kernel, because of the memory fac-
tor N, . . This memory vanishes if
- 75_,51, Eat: 7’6,60 (tl |x0’t0)
., 0

= —A_ E; A, (t|xpt0) =4, (X0,t0) o
which implies that this common positive value A, (x4,t,) is
independent of €,, ¢,, and ¢. Then we see from (32) that

(32)

A, (t|xot5) =exp —f at' A, (xpt'), (33)

4
Ve (011X0t0) = Vere, (11Xt ) €Xp ~ f di' A (xot”) .
o

(339
It results from these relations that Eq. (30) reduces to an
ordinary evolution equation without memory if

d
ALt |xo,t0) = Aat [Xpte) = — A (Xost) s (34)
0

AZ N (HX0ut0) Vere, (F|X0rto) = Ve, (2 |x02) . (34)

These quantities are, respectively, the conditional probabil-
ity rate of having any transition at time ¢, and of having a

d
EEPEGO (X,t ]xo)

€ o

(30)

I
transition towards regime €, at time ¢, knowing that there
has been no transition from ¢, to ¢. Equation (34) and (34')
show that if the memory vanishes they may depend on ¢ but
not on the time ¢, of the previous transition. These condi-
tions are necessary to obtain a Markov process.

Remark: In the case of Markov processes, the transition
probabilities specify the Markov process in an unique way
(i.e., up to an isomorphism of probability spaces). In our
case, we can study by the generalized evolution equation
only some special transition probabilities. In general, they
will not be sufficient to determine the process completely,
but for physical applications they will give information on
the two-time correlation functions, the equilibrium value
distribution, and the rate constants (see Ref. 12 and subse-
quent publications).

On the other hand, we have described in Ref. 11 the
trajectories of our processes; this work stresses the analytical
aspect and we refer to' for a detailed description of the tra-
Jectories.

C. Time-homogeneous processes

It is conceptually interesting to distinguish the initial
and final times in the conditional probabilities, as has been
done previously, in order to point out the backward nature of
the equations. However, many of the physical processes are
time homogeneous: the waiting time 7, . of a transition
€, €, does not depend on the beginning f, of regime €,, and
all two-time quantities only depend on the difference

between these times; then the quantities A, and v, . defined
by (34) and (34’) are independent of ¢, as well as the transi-
tion rates y, . (x;|x;” ). In this case we write

peq, (X,t ,xO’tO) =pse(, (x’t - tO‘xO) H
and the generalized master equation becomes

- IA
= — Pee, (X:t [X0) L, (Xp) — P, (X,2 IXO)AE;]_H? (X2 ]x0) + D | dX1 Pee, (5,1 [X1)Pe,e, (X1]%0) Ve, (Xo)

t
+y : d‘rfdxl dx” Pee, (Xt — T|X )Y, (X1|X0 IV, (8,7]X0)P., (X7 ,7]%0) .
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The memory term N, is easily deduced from (31),

Ne,so (t’Tle) = 'a_' Yeeo (T|x0)
ar

a
—Yeeo (r|x0)A€: l(t |x0) E A€o (t ]xo) ,

(36)

From (33) and (33'), N, ., vanishes if
A,, (2 |xo) = exp( — 4, (%)), 37
Yeweo (£ 1%0) = Vee, (X0) €xp( — A, (%0)1), (37)

thus exponential waiting times are necessary and sufficient
conditions to recover a process without memory, as was ex-
pected; in this case (35) is exactly the backward master
equation.

From now on we will treat time-homogeneous pro-
cesses, unless otherwise specified.

D. A particular case

It may occur that the conditional probability of having a
transition €,— €, between ¢ and 7 + dt, knowing that there is
a transition from ¢, in this time interval, is independent of
the pausing time in €,; then one may write

ye.eo (t |xo)
— (3/d) A (t|x,)

(since the dependence on x, is only through constant of mo-
tions, which are the same in state x; at the end of
regime €,).

Physically, this property can be true if all transitions
have the same cause which determines the end of ¢, the
choice of the next regime ¢, being independent of the pausing
time in €,. In this case the generalized master equation may
be written in a simple form by defining the matrices

p=(pee.,), p0=(6eeopeo)7
A= (6 ,A,), r=(Velc,),

= ae,eo (xo) = ae,50 (Xl— ) (38)

39

2

N(t,7]xo) = : A(7|xg)

7_2

ad _ ad
— —a—T—A(T|xO)A (2 |xo) b—tA(rlxo) ,

and the (diagonal) matrix of operators,

E(xo) = (55602‘_60 ('x())) N
Then, using matrices products, Eq. (35) becomes

ad
Ep(x,t |x5)

= —p(xt [xo)f(xo) + p(xt |xo)A™! %A(z‘ [%0)
— J dx, p(xt |x ) (x| xo) (—%A(leo)

— J de dx,dx; p(x,t—71|x,)
(0]
Xp’(xllxl_) po(xl_ :Tle)N(I’T|x0) ) (40)
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which is the final equation given in Ref. 11.
It is clear from (37) and (37’) that Markov processes
must be of this kind. In this case we can write

A(?|xy) = exp( — A1),

and Eq. (40) becomes a standard master equation,

(41)

%p(xt |X0) = — pxt |x,)L(xy) + f dx {p(xt|x,)

— p(xt |xg) i (xq|xg) A (42)

If the Markov process during regime € is a jump process with
an exponential pausing time with time constant 7, and tran-
sition rate v, (x'|x) from x to x/, it is seen that the total
Markov process is a jump process with time constant A,
+ 7. and transition rates from € to €,

Hee (xllx)/{e + 85’51/6 (x,’x)ne
Ae + 1. '

E. A remark on non-Markovian regimes

It can be interesting for some applications to study the
more general situation where the evolution in the regimes is
not Markovian. Then it can be seen that, if quantities 6 and ¢
defined by (13) and (14) can be computed, the integral
equation (22) applies, but the integrodifferential equations
such as (29) obviously do not make sense.

IV. GENERAL PROPERTIES
A. Condensed evolution equation

Much works on non-Markov processes use a general-
ized Langevin equation: for this reason we have carefully
studied how such an equation may be deduced from the fun-
damental evolution equation (23). However, the general
properties of the process are more easily derived from the
integral equation (22) for the conditional probability
P (At |xqt,) to be at time ¢ in regime € and in subset 4 of
the state space, knowing that the system was in regime €, and
state x, at time ¢, just after a transition.

We again use the compound transition probabilities @,
and @ defined in Sec. II D with the same notations.

In order to write the evolution equations concisely we
introduce the matrices

P=(P.,),
0 =(0.)=0.0,), (43)
¢= (q)eeo) ’

and we define the * product as the matrical product followed
by the integrations on x; and on #,. Then Eq. (22) may be
written

P(A,t |xo5t5) = (O + Prd) (A, |x4,8,) - (44)

Here A is a subset of the Cartesian product E of all the state
spaces E,,

E=T]E..
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In these condensed notations, relation (19) between @ and
¢ becomes

1= (U+ 1x®) (E |x5,2,) , (45)

where 1 denotes the (m + 1) line vector (1,1,...,1) and U the
(m + 1) line vector defined by

U= (®50), Eo=0,1,2,... . (46)

This condition is clearly necessary in order that the solution
of (22) be normalized, since it results from (22) by writing
P(E,t |x4t,) = 1. Weshall see that it is not always sufficient.

Before studying the solution of Eqs. (22) and (23), we
notice that since U(E,f |x,,2,) -0 as t— o, Eq. (45) shows
that @ is a solution of the equation

V= (v*q))(E,w|xO’t0) ’ (47)
which reads explicitly
Ve, (X0s20) = 2 J‘ J Ve, (x3,21)
€ Yt >1, JxEeE,
X, ., (dx,,dt)|xe.t) , (48)

where v, (E, o [X0.t5) =0, (X0,0,) is a function €,,x0,%.

On the other hand, if we assume that P, (4,t [X,,%,) has
a limit Q.. (4 |xot) = P, (4, |xpt,) when t— 0, Eq.
(22) shows that the (p-+1) vector Q.= (Q. ),
€, = 0,1,2,..., is a solution of (47) for any € or 4. Thus if this
equation has a unique solution (up to a multiplicative con-
stant) we conclude that

Q. «1,

which means that P, (4, co |x4,t,) do not depend on €y,x,,.

The previous assumptions must be verified on particular
models; nevertheless it can be said that the asymptotic prob-
ability law, if defined, is generally independent of the initial
conditions, as could be expected.

B. Formal solution of the evolution equation

Iterating Eq. (22) yields the formal solution of Egs.
(22) and (23),

P=G)+®*(I)+@*<I)*<I>+---+@*(I)*"+---,
(49)

where the right-hand side displays the successive contribu-
tions of the evolutions with no change of regime between ¢,
and ¢, with one change, two changes, etc.

This is the equation written by van Kampen for the com-
posite stochastic processes.'® In Appendix A, it is shown that
the formal series that appears in Eq. (49) is indeed
convergent.

In most practical cases its sum is normalized (unless an
infinite number of transitions can occur during a finite time
interval) and then it yields the unique physically significa-
tive solution of the evolution equation. However, this solu-
tion, under the form (49), is of little practical use; for this
reason we now turn to the solution of the evolution equation
by Laplace transforms.
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V.STUDY BY LAPLACE TRANSFORM
A. General solution

The Laplacg transform of a matrix function f(x,t |x,)
will be denoted f(x,s|x,),

£(x,5x0) = f dre="f(x,t |x,) . (50)
0

We now explicitly restrict to time homogeneous processes,
represented by their probability density matrix p(x, |x,,0)
=p(x,t|x,). Then the fundamental equation (23) for p
yields

px,s|x4) = é(x,s|xo) + fdxl f)(x,slxl)(;a(xl,s|x0) ,

(5D

or in condensed notations
p=6+5¢, (52)
where the product pé implies the matricial product and the

summation on the intermediate coordinate x,.
By iteration it follows from (52) that

p=8+6+eb+ +¢ + ),
where I = (LE“) and
T (x]%0) = 6.0, 8(x — x,) .

(33)

The results of Sec. IV B show that the serigs (52) is
convergent [or at least, the analogous series for P(4,s]x,),
which is obtained by integrating (52) on the subset 4 of the x
space]. .

If the matrix I-¢ is invertible in the sense of the product
used in (52), the solution of (52) may also be written

p=01—¢) . (54)
In general no condensed expression of (i — @) " 'is known,
and the expansion (53) must be used. However, in the next

subsection we consider a particular case where this expan-
sion may be avoided.

B. System “without phase space”

Under this name we consider systems the description of
which includes no state x (or a single, definite x for each
regime €). Then the product used in (52) is only a matricial
product and the solution (54) may be easily studied.

1. Solution

We notice that the conservation relation (45),

1=46, (1) +Zj dt' . (t')
e JO

implies

0=s"'1-F(s)) (55)
with

Fff($) =6, 3 #ee, () - (56)

Except f(/)\r special values of s, the matrices A(s) = i- @(s)
and I — F(s) can be inverted, so that the solution (54) is
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=8()A(s)
=s i —F)i - §s)=s""B". (57)

It is clear from (55) and (56) that the vector 1=(1,1,.,1)
is a left eigenvector of B = (I —¢)( i— F) —! with eigen-
value 1; thus the same property is true for B~', and it results
from (57) that

P(s)

zﬁffo (s) =s"1,
which implies that the conditional probabilities p.. (¢) are
indeed normalized.

2. Stationary probability

The asymptotic value p( ) of p(¢) when 71— « is ob-
tained by taking the limit of sp(s) when s5-0:

sp(s) — p(e), and it is shown in Appendix B that

50

lq.

(o0) =limsp, (5) = —= R 58
Peloo msp ( S (58)
where

?e=f dztche,e(t) (59)
is the mean waiting time in regime €, and ¢ = (q. ) is the only

right eigenvector of A (0) corresponding to the eigenvalue 0.
Thus the stationary probability p, (o ) is independent
of the initial regime, as it should be.

3. Relaxation towards the stationary state

If the required conditions are fulfilled'® the conditional
probability density p(¢) can be obtained from its Laplace
transform p(s) by using the Laplace inversion theorem,'*

p(1) = limsp(s) + 3 res (¢"p(s)), (60)
where {s;} denotes the poles of ep(s), other than s = 0.
These poles are the zeros of det A(s) = det(I — @(s)), ex-
cept in exceptional cases, which will be discarded in this
general discussion.

It is shown in Appendix C that det 4 (s) has no zero for
R_s> 0. Thus the poles of p(s) have negative real parts, and
the corresponding time exponentials of p(f) — p(w) are
time decreasing, which shows that p(¢) indeed tends
top(eo).

VI. CONCLUSION

It has been seen that the present model of non-Marko-
vian processes leads to a rather simple formalism, which
may be treated by generalized master equations, or by inte-
gral equations; in some cases it is possible to obtain the most
important properties of the process analytically.

Many points remain to be studied, such as the possible
approximation schemes [the simplest one being implied by
the iterative solution (49)] or, more fundamentally, the
connection of the conditional probabilities used here with
the theory of fluctuations in thermodynamic equilibrium.
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We postpone such discussions to further papers. Applica-
tions of this formalism are given in other articles.'?

APPENDIX A: CONVERGENCE OF THE FORMAL
SOLUTION OF THE EVOLUTION EQUATION

Using the notation of Sec. IV let us consider the formal
solution (49) of the evolution equation (22),

P=0 4 OxP  O+xPxPD 4 -+ + OxP*" |
(A1)
We shall see that this formal series is indeed convergent.

As amatter of fact let us define the conditional probabil-
ity P,

PP=0, (A2)
=0 3 o*". (A3)

k=0
Here P7, (A, |x,t,) is the conditional probability of being

in regime € and subset 4 of E, at time ¢ after at most »
transitions since time f,. Clearly

P"t =@ 4+ Pxd =P + O+p*"+ D (A4)
and PZ, (A,t |x,,t,) increases with n.
On the other hand,
Pe, te, (4,2 |X0,) <P (Ee,t |X0sto) -
But if
S PL(Et |xpte)<1, (AS)

then by (A4) and (AS),

an+1(

so that (AS5) is satisfied for all », since it is true for n = 0.
Thus P[, (A, |xgt,) converges to a limit as 7 — o,

1 X0st0) (U + 13@) (B f x5t =1,

n (At |xpty) P,

€€,

(A, |Xosto) <P, (E ot |X0sto) <1

(A6)

and by (A4) the limit matrix P{4,¢ |x,,Z,) satisfies the fun-
damental equation (44).

However, it may happen that the limit
2 P, (Et|xot,) isinferior to 1. But from definition (A6)
it is the probability that a finite number of transitions occurs
between t and t’, including O transition; thus 1

P, (E.t|xt,) is the probability of having an infinite
number of transitions in this time interval: it may differ from
0 in some special cases which will be excluded from this
study.

In particular, if @, (E, ,t |xo,t,) is superior to some de-
creasing positive function of ¢, 1 — a(¢), independent of the
initial conditions,

O (E t|xp,t5)>1 —a(t) >0,

then it is eas11y shown by recurrence that

(A7)

E()

PL (tIxpte) =Y PL (Eot [xp0)>1 — (@)1,

A8
which implies (A8)

P7 (t]x25)—>1 as n—oo.
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Condition (A7) is satisfied if, for instance, the pausing
times are exponential,

O, (E,t [xo,tp) «exp( — A, (%) (¢ — 15))
with A (x,) inferior to some constant A independent of €,
and x,.

On the contrary (A7) is not true in the case of periodic
changes of regime with a definite period 7 (which is consid-
ered lower) since ®, =0 for 7>7. But in this case
P7 (t|xg,t5), which is the probability of having at most »
transitions during ]#,2], is obviously 1 for n >t /7, so that P,
given by formula (A6), is again normalized.

Finally, it should be observed that if (A6) is normalized
it is the only acceptable solution of Eq. (22), since another

acceptable solution should satisfy, for any subset 4 of
E=IIE,,

O, (A1 |X0,25) >0, O, (4,1 |x0,80) .
In the same way

Q=0+ Q*xP>0 + 0+® =P,
and by recurrence

Q>P",
which implies

QEE() (Ayt |x0,t0)>Pseo (A’t |x05t0) » (Ag)

Y Qe (Bt [X0,t0) 2D Pe, (Eest [x0s8) = 1. (A10)

Thus Q cannot be normalized to 1, unless the equality holds
in (A10), so that it also holds in (A9) for any and any 4.

APPENDIX B: STATIONARY SOLUTION OF THE
EVOLUTION EQUATION

According to Sec. V B, the conditional probabilities
P, (?) in systems without phase space are determined by
their Laplace transforms under matricial form

Ps) =0 — @) ' =s""B (s, (B1)
and the asymptotic value P( e ) of P(#) is the limit of sP(s)
when s 0. .

Although the matrix A(s) = I — (s) is singular for
s = 0 since

SPa©=3 [dtp w=1,
€ e Y0

B~ (s) _generally has a finite limit as s—0. As a matter of
fact, if 4. (s) is the minor of the element 4,_(s) =6,
— @oc(5) of A(s), the determinant of A(s) is, for any €,

(B2)

€

detA(s) = (Z 4., (s))Zm (s), (B3)
whereas
A2 (s) =4, (s)(det A(s))"". (B4)

Generally A, (s) tends to a finite limit 4., (0) when s—0.
Furthermore,

50, (5) =3 A, (5) =51, + O(s) , (BS)
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where

1, = J dity @ (1)
0 €

is the mean waiting time in regime €,. Then it results from
(BS5) that if s—0,

sIA’“" (5) = sée ()4 2'(s)

(B6)

1A, (0
- =P (). (B7)
2 teA . (0) ¢
Now for any ¢,
(B8)

S A, (04, (0)=det A(0) =0.

But the matrix ¢ (0) is a stochastic matrix: its elements are
non-negative and by (B2) they add up to one in each col-
umn; thus by the theorem of Frobenius one is a simple eigen-
value of 4 (0), which corresponds to a unique right eigenvec-
tor q = (g, ) with non-negative components which add up
to 1: it is the stationary probability of a Markov chain on the
regimes €, with transition probability from €, to € given by
Pee, (0) = f dt @ (). This Markov chain is constructed
from the primitive process by deleting the influence of time.

Thus (B8) shows that there exists constant A, such that

Zfoel (O) = AE()qel
and (B7) yields the stationary probability,

1.q.

- ’ B9
25' te' qe' ( )

Pee,(0) =

which is independent of the initial regime.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF SYSTEMS
WITHOUT PHASE SPACE

It is known'® that if a function f(¢) satisfies
f(Dxe ¥ (1+a(n),

where a (1) is bounded and tends to 0 as - o, then its La-
place transform f(s) admits a pole of first order fors = — A,
and no other pole in the region R,s> — A. Thus the asymp-
totical behavior of the conditional probability P(¢) is found
by calculating the poles of f’(s), which are the zeros of de-
t A(s) (excepted in particular cases); but det A(s) has no
zero for R,s>0. As a matter of fact,

det A(s) = det(f — ¢(s)) =[] (1 = 4, (), (Cl)
if {4, (s)} is the spectrum of matrix ®(s).
We may write
max |4, (s)|<max Y |@.. (s)]
<max ) f dte” . (1), (C2)
€ © JO
and thus, if §, (s) =2, @, (5),
max |4, (s)|<max é)E(Res) . (C3)
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(i) When R,s>0, . (R,s5) <@.(0) = 1: by (C1) itis
seen that det A(s) cannot vanish.

(ii) When R,s =0 and s = iy #0, in (C2) the equality
holds if and only if the waiting time 7.._ of a transition € — ¢’
takes discrete values 7. + 2kw/py, kK =0,1,2,.... Then it
may be shown that det A (iy) cannot vanish, unless the dif-
ferent regimes are initiated at discrete, periodic times, with
period 277/y. Such a special case, which should be treated asa
discrete time process, is out of the scope of the present work.

Proofof (ii): Let p,.. be the probability that the first tran-
sition from € leads to €,

pee’ :L dt¢)e's(t) :¢ee(o) . (C4)
Thus @ (¢)/p.. is a probability density on positive times,
and the complex number

J dte'iy"Pe'e(t)/Pe‘e =Z€’€ (CS)
0

necessarily lies inside the complex circle |z| < 1, unless the
probability density @, (¢)/p.. is concentrated on times for
which e ~ %' has the same value; this means that there exists a
deterministic time 7., > O such that

Prob(e  ¥7e =
in this case the only possible values of T, are
tk. =7, +2kn/y, k=0,1,2,....
As a result we may write

|¢€s (ly)l =Pee lze'e I <pe'£ ’

e_‘ch'e) =1 ;

(C6)

max z |¢A76'e (ly) I <1 ’

the equality being possible only if |z,..| = 1, which implies
(C6) for at least one ¢, as shown previously.

More precisely it is seen from (C1) that det A(iy) van-
ishes only if 1 is an eigenvalue of @ (iy), which implies the
existence of a left eigenvector u = {#_ } such that

U, = 2 UePee (ly) . (C7)
Let the maximum value of |u, | be realized for some regime
€,; then using definitions (C5) and (C7) for € = ¢,

1= z z Zee,Pee, - (C8)

€ €

Now it should be noticed that, since |z, | <1,

|(us’/ueo )ze’so | <1 N

u
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Thus the equality (C8) can hold only if
(e /U )z =1 (C9)

for every regime €’ such that p.. #0. Equation (C9) implies
lu./u. | =1and |z, | = 1, which in turn implies condition
(C6), and by (C5)

Zo, =e VT, (C10)
Defining 7. up to an additive constant by

U= lule”"", (C11)
it results from (C9)-(Cl11) that

Tee, =Te — Te, + 2k7/y . (C12)

But (C8) may be used in the same way when €, is replaced by
any regime € accessible from ¢€,( p,., #0) since then |u,|
= |u_ |. In the simplest case p. #0 for any two regimes €
and €’; as a consequence the waiting time T, for a first
transition € » €’ can only take the values

k=0,12,..,

which implies the assertions (ii).

To — T + 2kw/y,
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